
1/22JDN / AAU

Awaiting :-)

2/22JDN / AAU

Sensor/Actuator Communication
by
I2C

● Develop own I2C master slave nodes for

● your own realtime fieldbus

● develop communication scheme

● design & implement master and slaves

● (test timing)

3/22JDN / AAU

● http://i2c-bus.org/i2c-primer

http://i2c-bus.org/i2c-primer

4/22JDN / AAU

I2C paradigm
● Master slave communication

– only master can initiate communication
– master can write data to slave

– master can read data from slaves

● Slave cant talk to slave !!!
● Slave cant initiate talk to master !!!

● I2C can do multi master – but out of scope today)

● 100 kHz or 400 kHz

5/22JDN / AAU

I2C electronics (high level is passive

6/22JDN / AAU

7/22JDN / AAU

the Hidden Protocol

● Master and slave need to have negotiated a protocol

● Always:
– master tells either
– I will write/Send data to you
– or
– I want to receive data from you

● In either case YOU have to define a protocol based on
– Master always set agenda
– Slave has to obey
– Can be simple or complex – it’s up to you

8/22JDN / AAU

// Wire Slave Sender

#include <Wire.h>

void setup() {

 Wire.begin(8); // join i2c
bus with address #8

 Wire.onRequest(requestEvent); // register
event

}

void loop() {

 delay(100);

}

// function that executes whenever data is
requested

// this function is registered as an event

void requestEvent() {

 // B

 Wire.write(0x42);

 // as expected by master

}

 // Wire Master Reader

#include <Wire.h>

void setup() {

 Wire.begin();

 // join i2c bus (address optional for
master)

 Serial.begin(9600); // start serial for
output

}

void loop() {

// request 1 bytes from slave device #8

 Wire.requestFrom(8, 1);

// slave may send less than requested

 while (Wire.available()) {

 char c = Wire.read();

 Serial.print(c); // print the
character

 }

 delay(500);

}

9/22JDN / AAU

Master req 1 byte from slave #8
(get a A 0x14)

10/22JDN / AAU

simple master read protocol

#include <Wire.h>

void setup() {
 Wire.begin(8); // slave addr #8
 Wire.onRequest(requestEvent);
}

void loop() {
 delay(100);
}

// function that executes whenever
// data is requested by master

void requestEvent() {
 Wire.write(“123456”);
 // respond with message of 6 bytes
 // as expected by master
}

#include <Wire.h>

void setup() {
 Wire.begin();
Serial.begin(9600);
}
void loop() {
 Wire.requestFrom(8, 6);
// request 6 bytes from slave #8

 while (Wire.available()) {
 // slave may send less than requested

 char c = Wire.read();
 Serial.print(c);
 }

 delay(500);
}

11/22JDN / AAU

Clock stretching – slave buys time

12/22JDN / AAU

Spec of today mini project

● Two or more Arduinos
– connect SDA and SCL lines
– if different power the also connect GND
– Pullup is integrated Arduino but you might add two 10 kOhms

just to be sure

13/22JDN / AAU

a comment

● You cant specify a read address in a read call from
master.

● you can only specify id of slave.

● so it’s real simple :-)

14/22JDN / AAU

Slave memory map

● adr 0-3 : “read” analog read a0-a3
● adr 4-7 : “read” digital read pin 8,9,10,11

– initalised as INPUT_PULLUP
● adr 4-7 : “write” digital write pin 4,5,6,7

– initalised as OUTPUT
● adr 8 : “write” Serial.print()

● adr 4-7 is used as write and read memory :-)
– just to save memory map

15/22JDN / AAU

typical read from slave

● master write ID of register to a dedicated register
reference register
– write(<i2c id><reg ref register>< value>)

● and issues a read just after
– read(<i2c id> <&dest>)

● reg ref register is at adress 39
● we want to read register no 3

char dst;

Wire.”write”<i2c ID>, 39, 3);

Wire.”read”(<i2c UD>, &dst);

16/22JDN / AAU

Spec II

● analog ports at slave - read only
● digital port at slave - read and write
● serial port at slave - write only (Serial.print)

17/22JDN / AAU

write to slave in C

void xxx(char regNo, char *p) {

int i;

 Wire.beginTransmission(DS1307_I2C_ADDRESS);

 Wire.write(regNo);

 for(int i=0; i<length; i++) {

 Wire.write(*p);

 p++;

 }

 Wire.endTransmission();

}

18/22JDN / AAU

slave call back

#include <Wire.h>

void setup() {

 Wire.begin(8); // join i2c bus with address #8

 Wire.onRequest(requestEvent); // register event

}

void loop() {

 delay(100);

}

// function that executes whenever data is requested by master

// this function is registered as an event, see setup()

void requestEvent() {

 Wire.write("hello "); // respond with message of 6 bytes

 // as expected by master

}

19/22JDN / AAU

exercise II – DS 1307 real time clock

● Pick up a DS 1307 and 32 kHz XTAL at lab
● Do the mockup
● Get it up and running

NB at instructables below be aware of how they use

http://www.instructables.com/id/Arduino-Real-Time-Clock-DS1307/

20/22JDN / AAU

DS 1307

21/22JDN / AAU

DS 1307 real time clock(slave addr 0x62)

Simple R/W on all addresses

22/22JDN / AAU

char readASingleByte(char regNo)

{

 Wire.beginTransmission(DS1307_I2C_ADDRESS);

 Wire.write(regNo);

 Wire.endTransmission();

 Wire.requestFrom(DS1307_I2C_ADDRESS, 1);

 return Wire.read();

}

// you can read more than one – its up to you

