
 1/22

RS485

• Serial Communication
• Nr of Nodes >= 2
• No automatic access mechanism’s

• Easy to get collision between messages
• A node read what it is transmitting

• Meaning TX and RX channels 100% separated logic wise

 2/22

RS485-II

• TX is a “double signal”
• Receiver is differential so receive a “0” or “1” is not an absolute voltage
• But rather “positive” or negative”

 3/22

Noise immunity

• Twisted cables and ...
• Differential signals
• “makes” cables longer :-)

 4/22

How long ? How many ?

• RS422 is a differential variant of rs232
• 120 ohm terminating resistors is tp avoid standing waves on the cables
• No of nodes is restricted by “fanout” - how much a TX nodes can “produce”

og amperes on the cable
• Length normally < 1200m (rs232 < 15m)

 5/22

How ?

• Default in RX-only mode
• Activate TX circuit by “RTS” Request To Send

• NB: Arduinos TX with 0-5V signals
• The rs485 interface convert it to symmetric

 6/22

Access to rs485 network – Ostrich protocol

• Ostrich method
• Go for it just ...

• Activate your rs485 tx

• Send your bits and bytes

• Deactivate your rs485 tx

• You might be lucky
• Or have message collision == you loose your data

• Open question(s)
• How do you detect message loss ?

• What will you do upon detection ?

 7/22

Media Access Policy

• RS485 has no builtin (hardware) mechanism

• You will do design your own access protocol

• ...

 8/22

Media Access Policy

• RS485 has no builtin (hardware) mechanism

• You will do design your own access protocol

• The next simples (Ostrich is the simplest)

• Master slave(s) policy

• Only master can initiate communication
• Its convenient that all slave nodes has a known identity
• Slaves will reply upon request from master

• Master can initiate
• Tx data to slave(s)

• Request to slave to TX data back to master

• In basic version it’s a little uphill (performancewise) to move data
• From one slave to another slave

• -

 9/22

Protocols – here the problems starts

1) Master asks slave A to send data to master
2) Master sends slave As data to slave B which need it

Potential problems

3) A slave has some important info that it “need” to deliver now
1) What is now ?

2) The slave has to wait on the master requesting for info

3) When will thois happen ?

4) Its up to the master

So you have to design a protocol which

● Takes care of timing in your system
● On regular(?!) intervals ask relevant slaves for “new news”

Regular cyclic executive systems are well suited because
● You can design a master driven cyclic service scheme for the slaves

 10/22

Dynamixel

• Two protocols:
• Protocol 1

• Protocol 2 (love the names)

 11/22

 12/22

Instructions field

 13/22

Add parameters and CRC-16 check

• Th CRC-16 field is to ensure that the intended receiver receives an ok pkg

• There is a broadcast address (0xfe) so you can contact all
• For reset etc

 14/22

Example: status Pkg

• All Dynamixels motors has some command id for status: 0x55

 15/22

Your setup

• An arduino or eq
• A rs485 net
• Mx motors on the rs485 net

• So tx/rx code as normal but with surrounding “activate/deactivate interface”

 16/22

XBEE

 17/22

One way communication

• Measuring devices sends messages on regular intervals
• Only one type of message

• 2 analog EMG 16 bit int measurements

• 3 analog accelerometer x,y,z 16 bit int measurements

• A simple checksum

• http://kom.aau.dk/~jdn/edu/courses/19-2/sensact/xbee.html

 18/22

Short about time – cyclic executive

• Given ...
• No kernel or operating system

• Nothing to do except for the regulary executive

 19/22

unsigned long tt=1000; // 100 msec executive
unsigned long t1;

void setup() {
 // put your setup code here, to run once:
Serial.begin(9600);
 t1=millis(); // init
}

boolean isItTime()
{
 unsigned long t;
 t = millis();

 if (tt <= t- t1) {
 t1 = t;
 return true;
 }
 else { return false; }
}

void doYourCode()
{
Serial.println(t1);
delay (random(200,600));
}
void loop() {
 while (! isItTime()) ;
 doYourCode();
}

 20/22

unsigned long tt=1000;
unsigned long t1;

void setup() {
Serial.begin(9600);
 t1=millis(); // init
}

boolean isItTime()
{
 unsigned long t;
 t = millis();

 if (tt <= t- t1) {
 t1 = t;
 return true;
 }
 else {
 return false;
 }
}

void doYourCode()
{
 Serial.println(t1);
 delay (random(200,600));
}

void loop() {
 while (! isItTime()) ;
 doYourCode();
}

 21/22

Who is who ?

• You are the master
• You shall talk with your nodes/slaves

Time and speed

• Your RS485 is signalwise driven by your Adruino/Teensy/...

• So you have given baudrate (1 byte ~= 10 bits)
• 9600 baud ~= 900 bytes/second

• A protocol pkg is a least 12 bytes and more often 20 bytes
• So @9600 you can TX at most 450 pkg/sec
• An if you need a reply 200 call-reply pkgs – at most !!!

• Welcome to a new world

 22/22

More complicated code

• You might want to have more than one service running
• A service can be your controller ...

1) Getting data from your motors (angles, momentuum,...) I assume you are the master

2) Calculating controller

3) Tx setpoints back to the motors

4) Wait until next sample time

● Solutions might be...

● “complicated” intereupt system
● A realtime operating system or kernel

● Not the scope 2day

● 2day – get into communication with your robot with your own code

EOL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

