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Objectives

• Why do we write safety requirements?
• How do we make sure they’re correct?
• How do we make sure they’re 

complete?
• How do we decide if it’s safe enough?
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Requirements, Specification 
and Design
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The Machine and the World

Machine

Application 
Domain

World

Interface

Domain
Hazard

Machine
Hazard

Accident

— control shared phenomena

— react to undesirable behaviour 
of phenomena by the World

Machine hazards may 
often result from chosen 
implementation

Accidents only occur in the World

A Hazard is a condition of the World from which accidents can occur

We define three specific classes of hazard:

World Hazards that are outside the scope of the Application 

Machine hazards occur at the interface

Domain hazards are those that occur in the Application Domain but are 
not directly related to the Machine

Accidents we need to consider can be caused by Machine hazards or Domain 
hazards or both

Accidents outside the Application Domain are outside scope

Machine hazards arise 

Due to failure to control shared phenomena correctly

Failure to react to undesirable behaviour or Domain hazards
Choosing a Nuclear Power Station as a power supply can change the scope of 
the Application Domain.
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Specifying Safety

Machine

Application 
Domain

World

Domain
Hazard

Machine
Hazard

Accident

Safety Management

Safety Targets

Safety Functions
(incl. Performance)

Safety Integrity

Process/Construction 
Standards

Safety targets are about controlling accidents and domain hazards – they are 
external to our machine.

Safety functions and safety integrity define what the machine has to do to 
control risk, and how dependable that functionality has to be.

Process/construction standards apply to the design and construction of the 
machine – they are one way to achieve integrity, but not the only way.

Safety management standards underpin the whole exercise, e.g. requirements 
for competence of staff.
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We use sans-serif letters like W,M and I to refer to phenomena : things and 
events in the world, in the machine and in their interface.

We use script letters like R and S to refer to descriptions: statements about 
phenomena. 

Requirements are statements about things in the real world that we want to 
bring about. They need not be directly achievable by the machine. In some 
organisations they may be called Mission Needs or User Needs.

Specifications define what direct effects the machine will have on the world. In 
some organisations these are called “System Requirements Specifications” or, 
where the machine is built in software, “Software Requirements Specifications”. 

There are different terminologies in use, but these are used consistently 
throughout the course.

The  following table shows approximate equivalences between the terms used in 
REVEAL and those used in other organisations.
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Requirements, Specifications and 
Designs

• Requirements (R) are a collection of 
statements about things in the world (W) 
that we want the machine to make true

• A Specification (S) describes the machine’s 
external behaviour. 
– it includes only shared phenomena in the 

interface (I)
– it defines only things the machine itself 

can control
• A Design is a statement about the machine 

itself. It describes things in M.

REVEAL… Sometimes called… Or…
Requirement User Requirement Need
Specification System Requirement Requirement
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Exercise: The REVEAL Game
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If the machine can not achieve the requirements directly, then how can they be 
achieved?

Almost always, we rely on properties of the real world to connect the actions of 
the machine (like switching on a red light) to some desired result (like stopping 
traffic). These properties are called Domain Knowledge, D. (Remember that we 
sometimes call the part of the world we are interested in the application 
domain.)

We MUST state, as part of the requirements definition, what these assumed 
domain properties are.

Our specification is correct if and only if we can show that given the assumed 
domain properties and the specified behaviour of the machine, then we can 
deduce the requirements themselves. 

We call this reasoning a satisfaction argument. The logical deduction

D , S ⇒ R
formalises this idea. It means that the combination of domain 

knowledge D and specification S is enough to satisfy the requirements R.
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What is and What Should Be

• We can make two kinds of statement about 
phenomena in W:
– Facts

• Indicative statements of domain 
knowlege D describe properties of the 
world which are (or are assumed to be) 
true

– Wishes
•Optative statements describe the 

properties we want to be true - our 
requirements R
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Satisfaction Argument

• A machine satisfies the requirements if 
and only if

D , S  ⇒ R
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Another example, quoted by Michael Jackson, is a real air crash. Here is a 
grossly simplified account:

The requirement was that if the aircraft was moving on the 
ground then the pilot should be able to apply reverse thrust

The specification of the aircraft control systems was that if the 
wheels were rotating then the pilot should be able to apply 
reverse thrust 

This depended on a domain assumption that if the aircraft was 
moving on the ground then the wheels would be rotating with 
weight on them. Unfortunately this was false! The plane landed 
on a wet runway and some of the wheels did not have weight 
on or were not turning. So the pilot couldn’t apply reverse 
thrust, so the plane ran off the runway.

Although we have not done a systematic survey, it is easy to find examples of 
system failures arising from incorrect domain assumptions. These examples 
underline the importance of making such assumptions explicit. Writing them 
down does not necessarily mean that mistakes will be discovered, but not 
writing them down more or less guarantees that they won’t.
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Where do we go wrong?

• Many system failures are not failures to 
understand R ; they are mistakes in D
– A NYC subway train crashed into the rear 

end of another train on 5th June 1995. 
The motorman ran through a red light. The 
safety system did apply the emergency 
brakes. However the ...signal spacing was 
set in 1918, when trains were shorter, 
lighter and slower, and the emergency 
brake system could not stop the train in 
time.
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From Requirements to 
Implementation
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In the bottom left is the initial statement of overall requirements (Rgen), such as 
“improve air traffic flow over oceanic airspace”. This very general statement 
is sometimes called “Mission Needs”

To get from here to a machine implementation we have to travel along two 
dimensions: to increase the amount of detail, and to move from the world to 
the machine. Notice that these are different dimensions: we can and should 
be precise about what a user wants without saying how it is to be achieved.

Two routes are shown on this diagram, but neither of them is realistic.
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How to get from Requirements to 
Implementation?

Requirements →Specification → Implementation

G
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 →
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Rgen

Impln

HLD?

?

Rdetailed
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The bottom route is the one all too commonly taken.  

It goes straight from the general statement of requirements to a high level 
design of the machine (HLD), and from there to the full implementation.

The problem is that the general statement of requirements gives little clue 
about how to generate a high level design. Indeed, it may give no hint at all 
as to what sort of machine might be used to meet the requirements: should 
it be a new ATC system, or new legislation which encourages airlines to fill 
their planes more efficiently? All the design decisions in going from Rgen to 
HLD are therefore suspect.

A high level design describes the structure of the machine but does not say 
what it will do. The detailed design cannot be derived without further 
understanding of the requirements - but by now the project is in the hands of 
the developers, not the customer.
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Start With the High Level Design?

Requirements →Specification → Implementation

G
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 →
D
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d

What sort of Machine?

What are the design
criteria?

What exactly should it do?

HLDRgen

Impln
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The top route might seem better: it develops a detailed statement of 
requirements before doing any design. 

However, this is also problematic, because to add detail to the requirements we 
need to have some idea about what sort of machine we are talking about - is 
it an ATC system at all? Maybe we would be better off making aircraft hold 
more passengers?

Until we have some idea what sort of machine we are trying to build, we can’t 
say what its detailed requirements are. Only when we have decided that we 
are going to build an ATC system can we start talking about requirements for 
aircraft separation, controller communications and so on. 
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Develop the Requirements in 
Detail?

Requirements →Specification →Implementation

G
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er
al

 →
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How can we know the
detailed requirements?

Rgen

ImplnRdetailed
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Requirements and specifications have to be developed hand in hand. The most 
practical route, therefore, is the one shown on this diagram. Starting from the 
general requirements such as “improve traffic flows”, we refine these into more 
specific requirements such as “reduce separations”, at the same time 
specifying what the ATC system needs to do to reduce separations. We thus 
arrive at a collection of detailed requirements which include a system 
specification. That system specification can be given to a supplier to design and 
produce the machine itself.

Typically the specification here would be based on a functional model – a set of 
functions (e.g. conflict detection) which are concrete enough that detailed 
requirements can be set, but without getting into implementation details (I.e. we 
don’t say whether the conflict detection is performed by a human or a machine).
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A Practical Document Set

Requirements →Specification → Implementation
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Setting Safety Requirements
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Example: ATC Safety Requirements

• Rgen (Safety Target)

• The likelihood of an aircraft accident 
caused by ATC shall be less than 
1.55 x 10-8 per flight hour.
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Example: ATC Safety Requirements

• Specification

• Conflict detection shall provide alerts 
when aircraft are within 10, 7, 5 and 3 
NM of each other.

Conflict Detection Surveillance

Conflict Resolution Flight Direction

One way of defining the detailed requirements is to use a functional model of the 
system. The requirements are defined around a simple block diagram of the 
system, which defines the abstract functions that need to be provided.

This has the advantage of being low-level enough that it is meaningful to users 
(so they can discuss the requirements in their language), but is not tied to a 
specific implementation (we haven’t said whether conflict detection is performed 
by a human or a computer). This ensures that the although the implementation 
may change, the requirements should stay the same.
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Functional Safety Requirements



Document reference: S.P544.61.4, issue 1.0

Page 20

Copyright © Praxis Critical Systems Limited 2003 Slide 20

Functional Safety Requirements

• Identify the functions required.

• Next consider how well those functions 
have to perform
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Safety Functions

• Functionality
– Analysis of correct operation
– Defines what each safety function must 

achieve
– Function
– Timing
– Accuracy
– Capacity etc.

• Integrity
– Analysis of functional failure
– Defines how dependable the function must 

be

Note that to some extent there is a trade off between functionality and integrity. 
If the range of acceptable behaviour is broad, then meeting the integrity 
requirements tends to be easier.
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Risk Reduction

No Risk Reduction -
Unacceptable

Maximum Risk 
Reduction –

No System Failures

Tolerable Risk 
Reduction –

With System Failures

R
is

k

Integrity

Without the system in place, the risk would be unacceptable.

When the system is performing perfectly (with no system failures), then it 
delivers its maximum risk reduction. This has to be tolerable (otherwise we need 
to rethink the entire project).

When we include the risks from failure then the risk must still be tolerable. The 
gap between the two (how well we can tolerate failure) defines the integrity 
required.

Defining the tolerable limit is difficult, but typically would either be by reference 
to a regulator or standard, by comparison with known death rates for the given 
industry, or by using past statistics (we want our accident rate to be no worse 
than it is at present).
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Performance Risk Assessment

• Assessment of the level of performance 
required to ensure safety in normal 
operation (without failure).

• Risk target has to be more onerous 
than the tolerable limit
– System must remain safe in the 

presence of predictable failure
• Dependent on extensive domain 

knowledge.
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Perfomance Risk Assessment

• For minor changes
– Demonstrate that existing standards 

are tolerably safe (when failure is 
excluded)

– Set performance requirements to 
match or exceed existing standards
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Failure Risk Assessment

• Identify hazardous failures
• Evaluate consequences and 

mitigations
• Each mitigation must be recorded, 

either as a safety function or as domain 
knowledge.
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Example: Event Tree

Failure

Success

Failure

Success

Failure

Null

Success

Failure

Null

Null

Null Successful ATC 
service provided 8.901e-1

Null Traffic separated, 
situation will be resolved
by aircrew procedures

9.890e-2

Success
Near miss 9.980e-3

Failure
Mid-air collision 9.990e-6

Success
Near miss 9.990e-4

Failure
Mid-air collision 1.000e-6

Loss of flight direction
to a single aircraft

w=1.000

Aircraft currently
separated
Q=1.000e-3

Conf lict detection allows
other aircraf t to be kept

away
Q=1.000e-2

Establish other
communications or use a

shepherd aircraf t
Q=1.000e-1

Risk of aircraft collision
once separation lost

Q=1.000e-3

Consequence Frequency

1.000
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TLS Apportionment

Total Risk

System 
Risk

TOP1

GATE1 EVENT1
I E

r=0

EVENT2
I E

r=0

EVENT3
I E

r=0

TLS

Tolerable Risk 
per Hazard

Integrity Targets for 
Safety Functions 

(THOR)

Subsytem Integrity 
Targets

This is explained in more detail on the following slides.



Document reference: S.P544.61.4, issue 1.0

Page 28

Copyright © Praxis Critical Systems Limited 2003 Slide 28

Example: TLS Apportionment

Identify hazards from our system 
and its interfaces (including 
aircraft)

Check scope – some hazards are 
out of scope and do not contribute 
to TLS (e.g. deliberate pilot actions)

TLSATC = TLSTotal – RiskAircraft

Check scope – some hazards are 
caused by the aircraft but must 
be mitigated by ATC (e.g. pilot 
reaction to a TCAS alert)

EUROCONTROL ATM Safety 
Target = 1.55 x 10-8 per flight 

hour
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Example: TLS Apportionment

Divide the ATC risk by the number of 
contributing hazards – this gives the 
tolerable risk per hazard.

P(Accident | Hazard)

For each hazard, calculate the 
likelihood of the hazard leading to an 
accident – use generic assumptions for 
‘nuisance’ failures, e.g. 1 in a million 
chance of an accident.

Also need to calculate the severity of 
the accidents that arise.

Tolerable Hazard Occurrence Rate

THOR = MaxRiskPerHazard
P(Accident | Hazard)*Severity

Dividing the risk by the number of hazards assumes that all hazards are defined 
at a similar level. It is a reasonable way to develop initial requirements, but may 
need to be revised later in the lifecycle. If a subsystem cannot meet its original 
integrity target then risk will have to be re-apportioned (increase integrity 
elsewhere to keep the overall risk within budget).

We also need to be careful to only include the hazards that can contribute to this 
particular risk target (if separate targets have been defined). For example, if we 
have a risk target for mid-air collisions, then we would not include ground 
surveillance systems in this part of the calculation – they would be covered by a 
separate risk target for ground movement collisions.

In ATC all accidents are regarded as catastrophic, so severity would not be 
included in the calculations. For other systems (e.g. railways where there is a 
difference between high-speed and low-speed collisions) the severity would need 
to assess the number of equivalent fatalities for each accident (e.g. 10 major 
injuries = 1 fatality, 10 minor injuries = 1 major injury).

For nuisance failures or failures with extensive external mitigation, this method 
can lead to very large THORs (e.g. a tolerable limit of several hundred failures a 
day!) – in such cases, the tolerable limit has to be defined pragmatically by 
considering the impact on user confidence rather than safety. Even if a system 
failure is demonstrably safe, a high failure rate would lead to a loss of 
confidence in the other (more critical) functions of the system.
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Correctness and Completeness
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Correctness and Completeness

• Satisfaction Arguments
• The Accident Tree



Document reference: S.P544.61.4, issue 1.0

Page 32

Copyright © Praxis Critical Systems Limited 2003 Slide 32

Satisfaction Arguments

Rdetailed
• Provide 5NM separation between 

aircraft

Specification
• Radar System
• Azimuth accuracy of 2 degrees
• Range accuracy 3% of distance

5NM (nautical miles not nanometres!) is the standard horizontal separation for 
aircraft.

The radar system accuracy specification is the UK minimum for an air-traffic 
control radar. In reality, most ATC radars are considerably better than this.
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Satisfaction Arguments

• Domain Knowledge: Typically apply 5NM 
separation up to 70NM away from radar 
source.

• Azimuth error at 70NM is
Azimuth Error/360 * 2π*radius
= 2/360 * 2 π *70
= 2.4 NM

2.4NM 2.4NM

At worst case error, if aircraft positions indicate 
5NM separation the true positions cannot 
overlap.

This is a very simplified example. The real satisfaction argument for this would 
be a lot more complicated and involves detailed assessment of the error 
distribution of the radar system.
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Satisfaction Arguments

• Trying to write satisfaction arguments 
often identifies:
– Missing specifications
– Missing domain knowledge
– Specifications with no connection to 

the requirements
– Infeasible or contradictory 

requirements
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Accident Fault Tree

Begin with identification of high level accidents which may be 
relevant to almost any Application Domain, e.g. primary causes of 
death.

The physical force aspect of the tree can then be decomposed 
further as an example.
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Physical Force (1)
Aircraft example

Refinement of accidents

This is not a complete tree, but a slice to indicate the approach.

5 lower level gates represent refinement of the primary accidents 
towards identification of machine and domain hazards
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Physical Force 
(2)

Need domain 
knowledge to define 
“excessive” and 
Operational Envelope

Machine
hazards

Domain 
hazard

Domain knowledge provides a definition of what constitutes 
excessive physical force in relation to the aircrafts operational 
envelope and its limits given that an aircraft cannot possibly 
withstand all weather phenomena

As defined previously, the Shared phenomena is the extreme 
weather detection mechanisms e.g. ATCO, weather radar

Machine needs to enter the weather phenomena for the accident to
occur

Domain Hazard – state of the real world from which accidents can 
occur hence domain hazard is “Extreme Weather Phenomena”

Note that two of the Machine Hazards can lead to accident scenarios 
independently of this domain hazard
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Accident Fault Trees

• Diverse check that all hazards and 
sources of risk have been identified.

• Can identify missing hazards and safety 
functions
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Conclusions
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Safety and System Lifecycle

• Understand the scope of the system – what 
risks are being mitigated?

• Integrity and performance requirements often 
drive system architecture – these need to be 
defined early on.

• Safety analysis is iterative – initial risk 
allocations may need to be revised as system 
design progresses.

• Hazards can arise from the design as well as 
from the functionality – some safety 
requirements may not be known until the 
design is complete.
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Safety Requirements

• The safety requirements will be derived from a 
number of sources
– the risk reduction process – e.g.risk targets 

and independence
– hazard mitigation - functional and physical 

properties
– constraints on design - standards, legislation, 

regulation, etc
– constraints on development or management 

process
– the resolution of any requirements or 

specification conflicts

The risk reduction process and hazard mitigation have been the 
focus of this tutorial, but there are other types which will need to be 
handled on any real project.

Constraints include design “must haves” e.g. Aircraft require TCAS in 
Controlled Civil Airspace, or a requirement to interface with existing 
equipment.

Constraints on development include process standards such as 
DO178B, DEF-STAN00-55.
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Here is a checklist for classifying any statement :

Is it a statement of fact which is true whether or not you build your machine? If so, it 
is domain knowledge D.

Is it a statement of fact which is true however you build your machine? For example, 
it may constrain what the machine could possibly achieve. 
If so, it is domain knowledge D.

Is it something that we want to come true? 
If so, it is a requirement R. (It may also be a specification.)

Can the machine by itself make it true?

If so, is it observable in the world?
If so, it is a specification S. (It may also be a requirement.)
If not, then it is part of the internal design and should not be in a 
requirements document.

If it is a requirement but not a specification, then can you find some specification S
and some domain knowledge D which can make it true?
If so, you can prove D , S © R.
If not, then it is an infeasible requirement.

If it is a specification but not a requirement, then is it something needed to satisfy 
some other requirement? 
If so, then it will play a role in proving D , S © R.
If not, why is it there?

If it is none of these things, why is it there?
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What Kind of Statement Is This?

• All statement types are important
– Domain knowledge, so you can justify the 

specification and prevent wrong 
assumptions about the domain.

– All requirements even those not directly 
achieved by the machine, so you can 
justify the specification and prevent wrong 
assumptions about what is really needed.

• Each kind of statement plays a different role
– Label each statement to indicate its role

• Be systematic in classifying statements
– For example use a checklist
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• Cause/Consequence Analysis provides a 
way of analysing mitigations

• All mitigations need to be captured, either as 
Domain Knowledge or as Requirements and 
Specifications

• Satisfaction arguments provide a way of 
connecting together Domain Knowledge, 
Specifications and Requirements

• Provide a strong justification that the 
specification is sufficient to ensure safety

D , S  ⇒ R

Understand the Connections
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Functionality and Integrity

• Safety requirements have to specify the 
required functionality (including performance) 
as well as integrity.

• Functionality in normal operation must be 
tolerably safe.

• Integrity is about how often we can tolerate 
behaviour which does not meet the 
specification.
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