
Document reference: S.P544.61.4, issue 1.0

Page 0

Document reference: S.P544.61.4, issue 1.0

Page 1

Copyright © Praxis Critical Systems Limited 2003 Slide 1

Safety Requirements

ISSC21 Ottawa

Dr Mike Ainsworth

Praxis Critical Systems Limited

Document reference: S.P9999.99.99, issue 1.0

Document reference: S.P544.61.4, issue 1.0

Page 2

Copyright © Praxis Critical Systems Limited 2003 Slide 2

Objectives

• Why do we write safety requirements?
• How do we make sure they’re correct?
• How do we make sure they’re

complete?
• How do we decide if it’s safe enough?

Document reference: S.P544.61.4, issue 1.0

Page 3

Copyright © Praxis Critical Systems Limited 2003 Slide 3

Requirements, Specification
and Design

Document reference: S.P544.61.4, issue 1.0

Page 4

Copyright © Praxis Critical Systems Limited 2003 Slide 4

The Machine and the World

Machine

Application
Domain

World

Interface

Domain
Hazard

Machine
Hazard

Accident

— control shared phenomena

— react to undesirable behaviour
of phenomena by the World

Machine hazards may
often result from chosen
implementation

Accidents only occur in the World

A Hazard is a condition of the World from which accidents can occur

We define three specific classes of hazard:

World Hazards that are outside the scope of the Application

Machine hazards occur at the interface

Domain hazards are those that occur in the Application Domain but are
not directly related to the Machine

Accidents we need to consider can be caused by Machine hazards or Domain
hazards or both

Accidents outside the Application Domain are outside scope

Machine hazards arise

Due to failure to control shared phenomena correctly

Failure to react to undesirable behaviour or Domain hazards
Choosing a Nuclear Power Station as a power supply can change the scope of
the Application Domain.

Document reference: S.P544.61.4, issue 1.0

Page 5

Copyright © Praxis Critical Systems Limited 2003 Slide 5

Specifying Safety

Machine

Application
Domain

World

Domain
Hazard

Machine
Hazard

Accident

Safety Management

Safety Targets

Safety Functions
(incl. Performance)

Safety Integrity

Process/Construction
Standards

Safety targets are about controlling accidents and domain hazards – they are
external to our machine.

Safety functions and safety integrity define what the machine has to do to
control risk, and how dependable that functionality has to be.

Process/construction standards apply to the design and construction of the
machine – they are one way to achieve integrity, but not the only way.

Safety management standards underpin the whole exercise, e.g. requirements
for competence of staff.

Document reference: S.P544.61.4, issue 1.0

Page 6

We use sans-serif letters like W,M and I to refer to phenomena : things and
events in the world, in the machine and in their interface.

We use script letters like R and S to refer to descriptions: statements about
phenomena.

Requirements are statements about things in the real world that we want to
bring about. They need not be directly achievable by the machine. In some
organisations they may be called Mission Needs or User Needs.

Specifications define what direct effects the machine will have on the world. In
some organisations these are called “System Requirements Specifications” or,
where the machine is built in software, “Software Requirements Specifications”.

There are different terminologies in use, but these are used consistently
throughout the course.

The following table shows approximate equivalences between the terms used in
REVEAL and those used in other organisations.

Copyright © Praxis Critical Systems Limited 2003 Slide 6

Requirements, Specifications and
Designs

• Requirements (R) are a collection of
statements about things in the world (W)
that we want the machine to make true

• A Specification (S) describes the machine’s
external behaviour.
– it includes only shared phenomena in the

interface (I)
– it defines only things the machine itself

can control
• A Design is a statement about the machine

itself. It describes things in M.

REVEAL… Sometimes called… Or…
Requirement User Requirement Need
Specification System Requirement Requirement

Document reference: S.P544.61.4, issue 1.0

Page 7

Copyright © Praxis Critical Systems Limited 2003 Slide 7

Exercise: The REVEAL Game

Document reference: S.P544.61.4, issue 1.0

Page 8

If the machine can not achieve the requirements directly, then how can they be
achieved?

Almost always, we rely on properties of the real world to connect the actions of
the machine (like switching on a red light) to some desired result (like stopping
traffic). These properties are called Domain Knowledge, D. (Remember that we
sometimes call the part of the world we are interested in the application
domain.)

We MUST state, as part of the requirements definition, what these assumed
domain properties are.

Our specification is correct if and only if we can show that given the assumed
domain properties and the specified behaviour of the machine, then we can
deduce the requirements themselves.

We call this reasoning a satisfaction argument. The logical deduction

D , S ⇒ R
formalises this idea. It means that the combination of domain

knowledge D and specification S is enough to satisfy the requirements R.

Copyright © Praxis Critical Systems Limited 2003 Slide 8

What is and What Should Be

• We can make two kinds of statement about
phenomena in W:
– Facts

• Indicative statements of domain
knowlege D describe properties of the
world which are (or are assumed to be)
true

– Wishes
•Optative statements describe the

properties we want to be true - our
requirements R

Document reference: S.P544.61.4, issue 1.0

Page 9

Copyright © Praxis Critical Systems Limited 2003 Slide 9

Satisfaction Argument

• A machine satisfies the requirements if
and only if

D , S ⇒ R

Document reference: S.P544.61.4, issue 1.0

Page 10

Another example, quoted by Michael Jackson, is a real air crash. Here is a
grossly simplified account:

The requirement was that if the aircraft was moving on the
ground then the pilot should be able to apply reverse thrust

The specification of the aircraft control systems was that if the
wheels were rotating then the pilot should be able to apply
reverse thrust

This depended on a domain assumption that if the aircraft was
moving on the ground then the wheels would be rotating with
weight on them. Unfortunately this was false! The plane landed
on a wet runway and some of the wheels did not have weight
on or were not turning. So the pilot couldn’t apply reverse
thrust, so the plane ran off the runway.

Although we have not done a systematic survey, it is easy to find examples of
system failures arising from incorrect domain assumptions. These examples
underline the importance of making such assumptions explicit. Writing them
down does not necessarily mean that mistakes will be discovered, but not
writing them down more or less guarantees that they won’t.

Copyright © Praxis Critical Systems Limited 2003 Slide 10

Where do we go wrong?

• Many system failures are not failures to
understand R ; they are mistakes in D
– A NYC subway train crashed into the rear

end of another train on 5th June 1995.
The motorman ran through a red light. The
safety system did apply the emergency
brakes. However the ...signal spacing was
set in 1918, when trains were shorter,
lighter and slower, and the emergency
brake system could not stop the train in
time.

Document reference: S.P544.61.4, issue 1.0

Page 11

Copyright © Praxis Critical Systems Limited 2003 Slide 11

From Requirements to
Implementation

Document reference: S.P544.61.4, issue 1.0

Page 12

In the bottom left is the initial statement of overall requirements (Rgen), such as
“improve air traffic flow over oceanic airspace”. This very general statement
is sometimes called “Mission Needs”

To get from here to a machine implementation we have to travel along two
dimensions: to increase the amount of detail, and to move from the world to
the machine. Notice that these are different dimensions: we can and should
be precise about what a user wants without saying how it is to be achieved.

Two routes are shown on this diagram, but neither of them is realistic.

Copyright © Praxis Critical Systems Limited 2003 Slide 12

How to get from Requirements to
Implementation?

Requirements →Specification → Implementation

G
en

er
al

 →
D

et
ai

le
d

Rgen

Impln

HLD?

?

Rdetailed

Document reference: S.P544.61.4, issue 1.0

Page 13

The bottom route is the one all too commonly taken.

It goes straight from the general statement of requirements to a high level
design of the machine (HLD), and from there to the full implementation.

The problem is that the general statement of requirements gives little clue
about how to generate a high level design. Indeed, it may give no hint at all
as to what sort of machine might be used to meet the requirements: should
it be a new ATC system, or new legislation which encourages airlines to fill
their planes more efficiently? All the design decisions in going from Rgen to
HLD are therefore suspect.

A high level design describes the structure of the machine but does not say
what it will do. The detailed design cannot be derived without further
understanding of the requirements - but by now the project is in the hands of
the developers, not the customer.

Copyright © Praxis Critical Systems Limited 2003 Slide 13

Start With the High Level Design?

Requirements →Specification → Implementation

G
en

er
al

 →
D

et
ai

le
d

What sort of Machine?

What are the design
criteria?

What exactly should it do?

HLDRgen

Impln

Document reference: S.P544.61.4, issue 1.0

Page 14

The top route might seem better: it develops a detailed statement of
requirements before doing any design.

However, this is also problematic, because to add detail to the requirements we
need to have some idea about what sort of machine we are talking about - is
it an ATC system at all? Maybe we would be better off making aircraft hold
more passengers?

Until we have some idea what sort of machine we are trying to build, we can’t
say what its detailed requirements are. Only when we have decided that we
are going to build an ATC system can we start talking about requirements for
aircraft separation, controller communications and so on.

Copyright © Praxis Critical Systems Limited 2003 Slide 14

Develop the Requirements in
Detail?

Requirements →Specification →Implementation

G
en

er
al

 →
D

et
ai

le
d

How can we know the
detailed requirements?

Rgen

ImplnRdetailed

Document reference: S.P544.61.4, issue 1.0

Page 15

Requirements and specifications have to be developed hand in hand. The most
practical route, therefore, is the one shown on this diagram. Starting from the
general requirements such as “improve traffic flows”, we refine these into more
specific requirements such as “reduce separations”, at the same time
specifying what the ATC system needs to do to reduce separations. We thus
arrive at a collection of detailed requirements which include a system
specification. That system specification can be given to a supplier to design and
produce the machine itself.

Typically the specification here would be based on a functional model – a set of
functions (e.g. conflict detection) which are concrete enough that detailed
requirements can be set, but without getting into implementation details (I.e. we
don’t say whether the conflict detection is performed by a human or a machine).

Copyright © Praxis Critical Systems Limited 2003 Slide 15

A Practical Document Set

Requirements →Specification → Implementation

G
en

er
al

 →
D

et
ai

le
d

Rgen

Rdetailed S Impln

Document reference: S.P544.61.4, issue 1.0

Page 16

Copyright © Praxis Critical Systems Limited 2003 Slide 16

Setting Safety Requirements

 Safety
Targets

Safety
Functions

Performance
Risk

Assessment

SF #1
& SOs

Functional
Failure

Analysis

Failure Risk
Assessment

SF #2
& SOs

SF #n
& SOs

Op
era
tio
nal
Do
ma
in
Kn
ow
led
ge

SF #3
& SOs

Safety
integrity

Safety
functions

Safety
Targets

Safety
Functions

Performance
Risk

Assessment

SF #1
& integrity

Functional
Failure

Analysis

Failure Risk
Assessment

SF #2
& integrity

SF #n
& integrity

SF #3
& integrity

Safety
Safety
functions

O
pe

ra
tio

na
l D

om
ai

n
Kn

ow
le

dg
e

Rgen

Rdetailed

Document reference: S.P544.61.4, issue 1.0

Page 17

Copyright © Praxis Critical Systems Limited 2003 Slide 17

Example: ATC Safety Requirements

• Rgen (Safety Target)

• The likelihood of an aircraft accident
caused by ATC shall be less than
1.55 x 10-8 per flight hour.

Document reference: S.P544.61.4, issue 1.0

Page 18

Copyright © Praxis Critical Systems Limited 2003 Slide 18

Example: ATC Safety Requirements

• Specification

• Conflict detection shall provide alerts
when aircraft are within 10, 7, 5 and 3
NM of each other.

Conflict Detection Surveillance

Conflict Resolution Flight Direction

One way of defining the detailed requirements is to use a functional model of the
system. The requirements are defined around a simple block diagram of the
system, which defines the abstract functions that need to be provided.

This has the advantage of being low-level enough that it is meaningful to users
(so they can discuss the requirements in their language), but is not tied to a
specific implementation (we haven’t said whether conflict detection is performed
by a human or a computer). This ensures that the although the implementation
may change, the requirements should stay the same.

Document reference: S.P544.61.4, issue 1.0

Page 19

Copyright © Praxis Critical Systems Limited 2003 Slide 19

Functional Safety Requirements

Document reference: S.P544.61.4, issue 1.0

Page 20

Copyright © Praxis Critical Systems Limited 2003 Slide 20

Functional Safety Requirements

• Identify the functions required.

• Next consider how well those functions
have to perform

Document reference: S.P544.61.4, issue 1.0

Page 21

Copyright © Praxis Critical Systems Limited 2003 Slide 21

Safety Functions

• Functionality
– Analysis of correct operation
– Defines what each safety function must

achieve
– Function
– Timing
– Accuracy
– Capacity etc.

• Integrity
– Analysis of functional failure
– Defines how dependable the function must

be

Note that to some extent there is a trade off between functionality and integrity.
If the range of acceptable behaviour is broad, then meeting the integrity
requirements tends to be easier.

Document reference: S.P544.61.4, issue 1.0

Page 22

Copyright © Praxis Critical Systems Limited 2003 Slide 22

Risk Reduction

No Risk Reduction -
Unacceptable

Maximum Risk
Reduction –

No System Failures

Tolerable Risk
Reduction –

With System Failures

R
is

k

Integrity

Without the system in place, the risk would be unacceptable.

When the system is performing perfectly (with no system failures), then it
delivers its maximum risk reduction. This has to be tolerable (otherwise we need
to rethink the entire project).

When we include the risks from failure then the risk must still be tolerable. The
gap between the two (how well we can tolerate failure) defines the integrity
required.

Defining the tolerable limit is difficult, but typically would either be by reference
to a regulator or standard, by comparison with known death rates for the given
industry, or by using past statistics (we want our accident rate to be no worse
than it is at present).

Document reference: S.P544.61.4, issue 1.0

Page 23

Copyright © Praxis Critical Systems Limited 2003 Slide 23

Performance Risk Assessment

• Assessment of the level of performance
required to ensure safety in normal
operation (without failure).

• Risk target has to be more onerous
than the tolerable limit
– System must remain safe in the

presence of predictable failure
• Dependent on extensive domain

knowledge.

Document reference: S.P544.61.4, issue 1.0

Page 24

Copyright © Praxis Critical Systems Limited 2003 Slide 24

Perfomance Risk Assessment

• For minor changes
– Demonstrate that existing standards

are tolerably safe (when failure is
excluded)

– Set performance requirements to
match or exceed existing standards

Document reference: S.P544.61.4, issue 1.0

Page 25

Copyright © Praxis Critical Systems Limited 2003 Slide 25

Failure Risk Assessment

• Identify hazardous failures
• Evaluate consequences and

mitigations
• Each mitigation must be recorded,

either as a safety function or as domain
knowledge.

Document reference: S.P544.61.4, issue 1.0

Page 26

Example: Event Tree

Failure

Success

Failure

Success

Failure

Null

Success

Failure

Null

Null

Null Successful ATC
service provided 8.901e-1

Null Traffic separated,
situation will be resolved
by aircrew procedures

9.890e-2

Success
Near miss 9.980e-3

Failure
Mid-air collision 9.990e-6

Success
Near miss 9.990e-4

Failure
Mid-air collision 1.000e-6

Loss of flight direction
to a single aircraft

w=1.000

Aircraft currently
separated
Q=1.000e-3

Conf lict detection allows
other aircraf t to be kept

away
Q=1.000e-2

Establish other
communications or use a

shepherd aircraf t
Q=1.000e-1

Risk of aircraft collision
once separation lost

Q=1.000e-3

Consequence Frequency

1.000

Document reference: S.P544.61.4, issue 1.0

Page 27

Copyright © Praxis Critical Systems Limited 2003 Slide 27

TLS Apportionment

Total Risk

System
Risk

TOP1

GATE1 EVENT1
I E

r=0

EVENT2
I E

r=0

EVENT3
I E

r=0

TLS

Tolerable Risk
per Hazard

Integrity Targets for
Safety Functions

(THOR)

Subsytem Integrity
Targets

This is explained in more detail on the following slides.

Document reference: S.P544.61.4, issue 1.0

Page 28

Copyright © Praxis Critical Systems Limited 2003 Slide 28

Example: TLS Apportionment

Identify hazards from our system
and its interfaces (including
aircraft)

Check scope – some hazards are
out of scope and do not contribute
to TLS (e.g. deliberate pilot actions)

TLSATC = TLSTotal – RiskAircraft

Check scope – some hazards are
caused by the aircraft but must
be mitigated by ATC (e.g. pilot
reaction to a TCAS alert)

EUROCONTROL ATM Safety
Target = 1.55 x 10-8 per flight

hour

Document reference: S.P544.61.4, issue 1.0

Page 29

Copyright © Praxis Critical Systems Limited 2003 Slide 29

Example: TLS Apportionment

Divide the ATC risk by the number of
contributing hazards – this gives the
tolerable risk per hazard.

P(Accident | Hazard)

For each hazard, calculate the
likelihood of the hazard leading to an
accident – use generic assumptions for
‘nuisance’ failures, e.g. 1 in a million
chance of an accident.

Also need to calculate the severity of
the accidents that arise.

Tolerable Hazard Occurrence Rate

THOR = MaxRiskPerHazard
P(Accident | Hazard)*Severity

Dividing the risk by the number of hazards assumes that all hazards are defined
at a similar level. It is a reasonable way to develop initial requirements, but may
need to be revised later in the lifecycle. If a subsystem cannot meet its original
integrity target then risk will have to be re-apportioned (increase integrity
elsewhere to keep the overall risk within budget).

We also need to be careful to only include the hazards that can contribute to this
particular risk target (if separate targets have been defined). For example, if we
have a risk target for mid-air collisions, then we would not include ground
surveillance systems in this part of the calculation – they would be covered by a
separate risk target for ground movement collisions.

In ATC all accidents are regarded as catastrophic, so severity would not be
included in the calculations. For other systems (e.g. railways where there is a
difference between high-speed and low-speed collisions) the severity would need
to assess the number of equivalent fatalities for each accident (e.g. 10 major
injuries = 1 fatality, 10 minor injuries = 1 major injury).

For nuisance failures or failures with extensive external mitigation, this method
can lead to very large THORs (e.g. a tolerable limit of several hundred failures a
day!) – in such cases, the tolerable limit has to be defined pragmatically by
considering the impact on user confidence rather than safety. Even if a system
failure is demonstrably safe, a high failure rate would lead to a loss of
confidence in the other (more critical) functions of the system.

Document reference: S.P544.61.4, issue 1.0

Page 30

Copyright © Praxis Critical Systems Limited 2003 Slide 30

Correctness and Completeness

Document reference: S.P544.61.4, issue 1.0

Page 31

Copyright © Praxis Critical Systems Limited 2003 Slide 31

Correctness and Completeness

• Satisfaction Arguments
• The Accident Tree

Document reference: S.P544.61.4, issue 1.0

Page 32

Copyright © Praxis Critical Systems Limited 2003 Slide 32

Satisfaction Arguments

Rdetailed
• Provide 5NM separation between

aircraft

Specification
• Radar System
• Azimuth accuracy of 2 degrees
• Range accuracy 3% of distance

5NM (nautical miles not nanometres!) is the standard horizontal separation for
aircraft.

The radar system accuracy specification is the UK minimum for an air-traffic
control radar. In reality, most ATC radars are considerably better than this.

Document reference: S.P544.61.4, issue 1.0

Page 33

Copyright © Praxis Critical Systems Limited 2003 Slide 33

Satisfaction Arguments

• Domain Knowledge: Typically apply 5NM
separation up to 70NM away from radar
source.

• Azimuth error at 70NM is
Azimuth Error/360 * 2π*radius
= 2/360 * 2 π *70
= 2.4 NM

2.4NM 2.4NM

At worst case error, if aircraft positions indicate
5NM separation the true positions cannot
overlap.

This is a very simplified example. The real satisfaction argument for this would
be a lot more complicated and involves detailed assessment of the error
distribution of the radar system.

Document reference: S.P544.61.4, issue 1.0

Page 34

Copyright © Praxis Critical Systems Limited 2003 Slide 34

Satisfaction Arguments

• Trying to write satisfaction arguments
often identifies:
– Missing specifications
– Missing domain knowledge
– Specifications with no connection to

the requirements
– Infeasible or contradictory

requirements

Document reference: S.P544.61.4, issue 1.0

Page 35

Accident Fault Tree

Begin with identification of high level accidents which may be
relevant to almost any Application Domain, e.g. primary causes of
death.

The physical force aspect of the tree can then be decomposed
further as an example.

Document reference: S.P544.61.4, issue 1.0

Page 36

Physical Force (1)
Aircraft example

Refinement of accidents

This is not a complete tree, but a slice to indicate the approach.

5 lower level gates represent refinement of the primary accidents
towards identification of machine and domain hazards

Document reference: S.P544.61.4, issue 1.0

Page 37

Physical Force
(2)

Need domain
knowledge to define
“excessive” and
Operational Envelope

Machine
hazards

Domain
hazard

Domain knowledge provides a definition of what constitutes
excessive physical force in relation to the aircrafts operational
envelope and its limits given that an aircraft cannot possibly
withstand all weather phenomena

As defined previously, the Shared phenomena is the extreme
weather detection mechanisms e.g. ATCO, weather radar

Machine needs to enter the weather phenomena for the accident to
occur

Domain Hazard – state of the real world from which accidents can
occur hence domain hazard is “Extreme Weather Phenomena”

Note that two of the Machine Hazards can lead to accident scenarios
independently of this domain hazard

Document reference: S.P544.61.4, issue 1.0

Page 38

Copyright © Praxis Critical Systems Limited 2003 Slide 38

Accident Fault Trees

• Diverse check that all hazards and
sources of risk have been identified.

• Can identify missing hazards and safety
functions

Document reference: S.P544.61.4, issue 1.0

Page 39

Copyright © Praxis Critical Systems Limited 2003 Slide 39

Conclusions

Document reference: S.P544.61.4, issue 1.0

Page 40

Copyright © Praxis Critical Systems Limited 2003 Slide 40

Safety and System Lifecycle

• Understand the scope of the system – what
risks are being mitigated?

• Integrity and performance requirements often
drive system architecture – these need to be
defined early on.

• Safety analysis is iterative – initial risk
allocations may need to be revised as system
design progresses.

• Hazards can arise from the design as well as
from the functionality – some safety
requirements may not be known until the
design is complete.

Document reference: S.P544.61.4, issue 1.0

Page 41

Copyright © Praxis Critical Systems Limited 2003 Slide 41

Safety Requirements

• The safety requirements will be derived from a
number of sources
– the risk reduction process – e.g.risk targets

and independence
– hazard mitigation - functional and physical

properties
– constraints on design - standards, legislation,

regulation, etc
– constraints on development or management

process
– the resolution of any requirements or

specification conflicts

The risk reduction process and hazard mitigation have been the
focus of this tutorial, but there are other types which will need to be
handled on any real project.

Constraints include design “must haves” e.g. Aircraft require TCAS in
Controlled Civil Airspace, or a requirement to interface with existing
equipment.

Constraints on development include process standards such as
DO178B, DEF-STAN00-55.

Document reference: S.P544.61.4, issue 1.0

Page 42

Here is a checklist for classifying any statement :

Is it a statement of fact which is true whether or not you build your machine? If so, it
is domain knowledge D.

Is it a statement of fact which is true however you build your machine? For example,
it may constrain what the machine could possibly achieve.
If so, it is domain knowledge D.

Is it something that we want to come true?
If so, it is a requirement R. (It may also be a specification.)

Can the machine by itself make it true?

If so, is it observable in the world?
If so, it is a specification S. (It may also be a requirement.)
If not, then it is part of the internal design and should not be in a
requirements document.

If it is a requirement but not a specification, then can you find some specification S
and some domain knowledge D which can make it true?
If so, you can prove D , S © R.
If not, then it is an infeasible requirement.

If it is a specification but not a requirement, then is it something needed to satisfy
some other requirement?
If so, then it will play a role in proving D , S © R.
If not, why is it there?

If it is none of these things, why is it there?

Copyright © Praxis Critical Systems Limited 2003 Slide 42

What Kind of Statement Is This?

• All statement types are important
– Domain knowledge, so you can justify the

specification and prevent wrong
assumptions about the domain.

– All requirements even those not directly
achieved by the machine, so you can
justify the specification and prevent wrong
assumptions about what is really needed.

• Each kind of statement plays a different role
– Label each statement to indicate its role

• Be systematic in classifying statements
– For example use a checklist

Document reference: S.P544.61.4, issue 1.0

Page 43

Copyright © Praxis Critical Systems Limited 2003 Slide 43

• Cause/Consequence Analysis provides a
way of analysing mitigations

• All mitigations need to be captured, either as
Domain Knowledge or as Requirements and
Specifications

• Satisfaction arguments provide a way of
connecting together Domain Knowledge,
Specifications and Requirements

• Provide a strong justification that the
specification is sufficient to ensure safety

D , S ⇒ R

Understand the Connections

Document reference: S.P544.61.4, issue 1.0

Page 44

Copyright © Praxis Critical Systems Limited 2003 Slide 44

Functionality and Integrity

• Safety requirements have to specify the
required functionality (including performance)
as well as integrity.

• Functionality in normal operation must be
tolerably safe.

• Integrity is about how often we can tolerate
behaviour which does not meet the
specification.

Document reference: S.P544.61.4, issue 1.0

Page 45

Copyright © Praxis Critical Systems Limited 2003 Slide 45

Praxis Critical Systems Limited
20 Manvers Street
Bath BA1 1PX
United Kingdom
Telephone: +44 (0) 1225 466991
Facsimile: +44 (0) 1225 469006
Website: www.praxis-cs.co.uk

Email: michael.ainsworth@praxis-cs.co.uk

Document Control
Praxis Critical Systems Limited, 20 Manvers Street, Bath BA1 1PX.

Copyright © Praxis Critical Systems Limited 2003. All rights reserved.

Changes history

Issue 1.0 (30th July 2003): Tutorial for ISSC21, Ottawa

Changes forecast

None.

