

Fault Tolerant Control

A Simultaneous Stabilization Result

Jakob Stoustrup

jakob@control.auc.dk

Department of Control Engineering

Aalborg University

Denmark

- Problem Formulation
- Preliminaries:
 - The Diophantine Equation
 - Strong Stabilization
- Simultaneous Stabilization
- A Parameterization
- Determining the Parameters
- Main Result
- Controller Structure
- Controller Order

- Problem Formulation
- Preliminaries:
 - The Diophantine Equation
 - Strong Stabilization
- Simultaneous Stabilization
- A Parameterization
- Determining the Parameters
- Main Result
- Controller Structure
- Controller Order

Problem Formulation (1)

Consider a system of the form:

$$\dot{x} = Ax + Bu$$

$$y_1 = C_1 x$$

$$y_2 = C_2 x$$

$$\vdots$$

$$y_p = C_p x$$

Each of the *p* measurements y_i , i = 1, ..., p, is the output of a sensor, which can potentially fail.

Problem Formulation (2)

Consider a system of the form:

$$\dot{x} = Ax + Bu$$

$$y_1 = C_1 x$$

$$y_2 = C_2 x$$

$$\vdots$$

$$y_p = C_p x$$

Each of the *p* measurements y_i , i = 1, ..., p, is the output of a sensor, which can potentially fail. Does a *fixed* feedback compensator exist that stabilizes the system even in the faulty situations?

Problem Formulation (3)

To be more precise, we are looking for a stabilizing dynamic compensator u = K(s)y with the property, that the following feedback laws:

$$u = K(s) \begin{pmatrix} 0 \\ y_2 \\ \vdots \\ y_p \end{pmatrix}, \ u = K(s) \begin{pmatrix} y_1 \\ 0 \\ \vdots \\ y_p \end{pmatrix}, \ \dots, \ u = K(s) \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ 0 \end{pmatrix}$$

are also internally stabilizing, i.e. that both the nominal system as well as each of the systems resulting from one of the sensors failing are all stabilized by K(s).

- Problem Formulation
- Preliminaries:
 - The Diophantine Equation
 - Strong Stabilization
- Simultaneous Stabilization
- A Parameterization
- Determining the Parameters
- Main Result
- Controller Structure
- Controller Order

- Problem Formulation
- Preliminaries:
 - The Diophantine Equation
 - Strong Stabilization
- Simultaneous Stabilization
- A Parameterization
- Determining the Parameters
- Main Result
- Controller Structure
- Controller Order

The Diophantine Equation (1)

Let M and N be elements of a ring \mathcal{L} . Then Mand N are coprime (i.e. $d \uparrow M$, $d \uparrow N \Rightarrow d^{-1} \in \mathcal{L}$) if and only if there exist $\tilde{U}, \tilde{V} \in \mathcal{L}$ such that

 $\tilde{V}M + \tilde{U}N = u$, where u is a unit, i.e. $u, u^{-1} \in \mathcal{L}$

The Diophantine Equation (1)

Let M and N be elements of a ring \mathcal{L} . Then Mand N are coprime (i.e. $d \uparrow M$, $d \uparrow N \Rightarrow d^{-1} \in \mathcal{L}$) if and only if there exist $\tilde{U}, \tilde{V} \in \mathcal{L}$ such that

 $\tilde{V}M + \tilde{U}N = u$, where u is a unit, i.e. $u, u^{-1} \in \mathcal{L}$

Example: let \mathcal{L} be the ring of integers. Since, 14 and 9 are coprime, there exist \tilde{V} and \tilde{U} , s.t.

 $14\tilde{V} + 9\tilde{U} = 1$

One possible choice is: $\tilde{V} = 2$, $\tilde{U} = -3$.

The Diophantine Equation (2)

Let \mathcal{L} denote the ring of stable, proper, rational functions. Then M and N have no common zeros in the right half plane if and only if there exist $\tilde{U}, \tilde{V} \in \mathcal{L}$ s.t.

 $\tilde{V}M + \tilde{U}N = u$ where $u, u^{-1} \in \mathcal{L}$

i.e. u is a stable minimum phase system of relative degree 0.

The Diophantine Equation (3)

Assume that two proper rational functions G and K are given. Then, it is always possible to choose $M, N, \tilde{V}, \tilde{U} \in \mathcal{L}$ such that $G = NM^{-1}$ and $K = \tilde{V}^{-1}\tilde{U}$. In that case, K is an internally stabilizing compensator for G, if and only if

$$\tilde{V}M + \tilde{U}N = u$$
 where $u, u^{-1} \in \mathcal{L}$

i.e. u is a stable minimum phase system of relative degree 0.

- Problem Formulation
- Preliminaries:
 - The Diophantine Equation
 - Strong Stabilization
- Simultaneous Stabilization
- A Parameterization
- Determining the Parameters
- Main Result
- Controller Structure
- Controller Order

Strong Stabilization

Let A(s), B(s) be stable proper transfer functions. Then there exists a stable proper transfer function Q(s) such that the function

A(s) + B(s)Q(s)

is a unit in the ring of stable proper rational functions, if and only if the sign of

 $A(z_{\sf ip})$

is constant for all $z_{ip} \in \{s \in \mathcal{R}_{+\infty} : B(s) = 0\}$.

- Problem Formulation
- Preliminaries:
 - The Diophantine Equation
 - Strong Stabilization
- Simultaneous Stabilization
- A Parameterization
- Determining the Parameters
- Main Result
- Controller Structure
- Controller Order

Simultaneous Stabilization (1)

Consider the following single-input dual-output system:

$$G = NM^{-1}(s) = \begin{pmatrix} N_1(s) \\ N_2(s) \end{pmatrix} M^{-1}(s)$$

(where $N, M \in \mathcal{L}$ are coprime) and assume that an internally stabilizing compensator is given:

$$K_0 = \tilde{V}_0^{-1}\tilde{U}_0 = \tilde{V}_0^{-1}\left(\begin{array}{cc}\tilde{U}_{0,1} & \tilde{U}_{0,2}\end{array}\right)$$

(where $\tilde{V}_0, \tilde{U}_0 \in \mathcal{L}$ are coprime) satisfying:
 $\tilde{V}_0M - \tilde{U}_0N = \tilde{V}_0M - \tilde{U}_{0,1}N_1 - \tilde{U}_{0,2}N_2 = 1$

Simultaneous Stabilization (2)

If the sensor corresponding to one of the outputs fails, the controller $\tilde{V}^{-1} \begin{pmatrix} \tilde{U}_1 & \tilde{U}_2 \end{pmatrix}$ has to stabilize a system of the form:

$$G = \begin{pmatrix} N_1(s) \\ 0 \end{pmatrix} \quad \text{or} \quad G = \begin{pmatrix} 0 \\ N_2(s) \end{pmatrix}$$

In the first case, the Diophantine equation becomes

$$\tilde{V}M - \left(\begin{array}{cc} \tilde{U}_1 & \tilde{U}_2 \end{array}\right) \begin{pmatrix} N_1(s) \\ 0 \end{pmatrix} = \tilde{V}M - \tilde{U}_1N_1 = u$$

Simultaneous Stabilization (3)

In summary, a compensator $K = \tilde{V}^{-1}\tilde{U} = \tilde{V}^{-1}\begin{pmatrix} \tilde{U}_1 & \tilde{U}_2 \end{pmatrix}$ is fault tolerant if and only if

$$\tilde{V}M - \tilde{U}_1N_1 - \tilde{U}_2N_2 = u_1$$

 $\tilde{V}M - \tilde{U}_1N_1 - \tilde{U}_2N_2 = u_2$

 $\tilde{V}M - \tilde{U}_1N_1 = u_3$

where u_1, u_2, u_3 are units. (WLOG, assume that $u_1 = 1$.)

- Problem Formulation
- Preliminaries:
 - The Diophantine Equation
 - Strong Stabilization
- Simultaneous Stabilization
- A Parameterization
- Determining the Parameters
- Main Result
- Controller Structure
- Controller Order

A Parameterization (1)

A crucial observation is that if $K_0 = \tilde{V}_0^{-1} \begin{pmatrix} \tilde{U}_{0,1} & \tilde{U}_{0,2} \end{pmatrix}$ is a stabilizing compensator for the nominal system,

A Parameterization (1)

A crucial observation is that if $K_0 = \tilde{V}_0^{-1} \left(\begin{array}{c} \tilde{U}_{0,1} & \tilde{U}_{0,2} \end{array} \right)$

is a stabilizing compensator for the nominal system, so is

$$K = \tilde{V}^{-1} \left(\begin{array}{cc} \tilde{U}_1 & \tilde{U}_2 \end{array} \right)$$

where

$$\begin{split} \tilde{V} &= \tilde{V}_0 - Q_2 N_1 - Q_3 N_2 \\ \tilde{U}_1 &= \tilde{U}_{0,1} - Q_1 N_2 - Q_2 M \\ \tilde{U}_2 &= \tilde{U}_{0,2} + Q_1 N_1 - Q_3 M \\ \end{split}$$
 and Q_1, Q_2, Q_3 are arbitrary stable functions.

A Parameterization (2)

 $K = \tilde{V}^{-1} \left(\begin{array}{cc} \tilde{U}_1 & \tilde{U}_2 \end{array} \right)$ is seen to be nominally stabilizing since:

$$\begin{split} \tilde{V}M &- \tilde{U}_1 N_1 - \tilde{U}_2 N_2 \\ &= \left(\tilde{V}_0 - Q_2 N_1 - Q_3 N_2\right) M \\ &- \left(\tilde{U}_{0,1} - Q_1 N_2 - Q_2 M\right) N_1 \\ &- \left(\tilde{U}_{0,2} + Q_1 N_1 - Q_3 M\right) N_2 \\ &= \tilde{V}_0 M - \tilde{U}_{0,1} N_1 - \tilde{U}_{0,2} N_2 = 1 \end{split}$$

Stability during faults (1)

This means that stability is obtained if and only if the compensator satisfies the two equations:

$$\begin{split} \tilde{V}_0 M - \begin{pmatrix} \tilde{U}_1 & \tilde{U}_2 \end{pmatrix} \begin{pmatrix} N_1 \\ 0 \end{pmatrix} \\ &= \tilde{V}_0 M - Q_2 N_1 M - Q_3 N_2 M \\ &- \tilde{U}_{0,1} N_1 + Q_1 N_2 N_1 + Q_2 M N_1 \\ &= \tilde{V}_0 M - \tilde{U}_{0,1} N_1 + Q_1 N_2 N_1 - Q_3 N_2 M = u_1 \end{split}$$

Stability during faults (2)

$$\tilde{V}M - \left(\tilde{U}_1 \ \tilde{U}_2\right) \begin{pmatrix} 0\\N_2 \end{pmatrix}$$
$$= \tilde{V}_0M - \tilde{U}_{0,2}N_2 - Q_1N_1N_2 - Q_2N_1M = u_2$$

where u_1 , u_2 are units in the ring of stable proper rational functions (i.e. stable proper functions with stable proper inverses).

- Problem Formulation
- Preliminaries:
 - The Diophantine Equation
 - Strong Stabilization
- Simultaneous Stabilization
- A Parameterization
- Determining the Parameters
- Main Result
- Controller Structure
- Controller Order

Selecting Q_1

Note, that it is possible to determine a stable proper function Q_1 , such that:

$$Q_1(s)N_1(s)N_2(s) - \tilde{U}_{0,1}(s)N_1(s)\Big|_{s=z_{ip}} = \frac{1}{2}$$

for every value of $z_{ip} \in \{z \in \mathcal{R}_{+\infty} : M(z) = 0\}$, since $N_1(z_{ip})N_2(z_{ip})$ can not be zero for $M(z_{ip}) = 0$ due to coprimeness of M and N_1 and of M and N_2 . To determine Q_1 in practice can be done by a standard rational interpolation.

Determining Q_3 (1)

Returning to the equation:

$$\tilde{V}_0 M - \tilde{U}_{0,1} N_1 + Q_1 N_2 N_1 - Q_3 N_2 M = u_1$$

For fixed Q_1 this can be solved by stable Q_3 if and only if (strong stabilization result)

$$\tilde{V}_0 M - \tilde{U}_{0,1} N_1 + Q_1 N_2 N_1 \Big|_{s=z_{\text{ip}}}$$

has constant sign for every value of $z_{ip} \in \{z \in \mathcal{R}_{+\infty} : M(z) = 0 \lor N_2(z) = 0\}.$

Determining Q_3 (2)

For $M(z_{ip}) = 0$ we obtain: $\tilde{V}_0(s)M(s) - \tilde{U}_{0,1}(s)N_1(s) + Q_1(s)N_2(s)N_1(s)\Big|_{s=z_{ip}}$ $= -\tilde{U}_{0,1}(s)N_1(s) + Q_1(s)N_2(s)N_1(s)\Big|_{s=z_{ip}} = \frac{1}{2}$

For $N_2(z_{ip}) = 0$ we get: $\tilde{V}_0(s)M(s) - \tilde{U}_{0,1}(s)N_1(s) + Q_1(s)N_2(s)N_1(s)\Big|_{s=z_{ip}}$ $= \tilde{V}_0(s)M(s) - \tilde{U}_{0,1}(s)N_1(s)\Big|_{s=z_{ip}} = 1$

Determining Q_3 (3)

To determine Q_3 in practice, one approach is first to find u_1 that interpolates all right half plane conditions (not just the positive half line) induced by N_2 and M. Then Q_3 can be computed by:

$$Q_3 = \frac{\tilde{V}_0 M - \tilde{U}_{0,1} N_1 + Q_1 N_2 N_1 - u_1}{N_2 M}$$

which is a stable proper solution to

 $\tilde{V}_0 M - \tilde{U}_{0,1} N_1 + Q_1 N_2 N_1 - Q_3 N_2 M = u_1$

Determining Q_2

Similar considerations regarding the equation $\tilde{V}_0M - \tilde{U}_{0,2}N_2 - Q_1N_1N_2 - Q_2N_1M = u_2$ proves the existence of a stable solution Q_2 , e.g. in terms of the formula:

 $Q_{2} = \frac{\tilde{V}_{0}M - \tilde{U}_{0,2}N_{2} - Q_{1}N_{1}N_{2} - u_{2}}{N_{1}M}$ where u_{2} has been chosen such that $u_{2}(z)$ = $\tilde{V}_{0}(z)M(z) - \tilde{U}_{0,2}(z)N_{2}(z) - Q_{1}(z)N_{1}(z)N_{2}(z)$ for every $z \in \{z \in C_{+} : N_{1}(z) = 0 \lor M(z) = 0\}.$

- Problem Formulation
- Preliminaries:
 - The Diophantine Equation
 - Strong Stabilization
- Simultaneous Stabilization
- A Parameterization
- Determining the Parameters
- Main Result
- Controller Structure
- Controller Order

Main Result (1)

THEOREM. Assume a system has the form:

 $\dot{x} = Ax + Bu$ $y_1 = C_1 x$ $y_2 = C_2 x$

(A, B) is stabilizable (C_1, A) is detectable (C_2, A) is detectable

Main Result (1)

THEOREM. Assume a system has the form:

 $\dot{x} = Ax + Bu$ (A, B) is stabilizable $y_1 = C_1 x$ (C_1, A) is detectable $y_2 = C_2 x$ (C_2, A) is detectable

Then there exists a fault tolerant controller K(s) such that

$$u = K \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \ u = K \begin{pmatrix} y_1 \\ 0 \end{pmatrix}, \ u = K \begin{pmatrix} 0 \\ y_2 \end{pmatrix},$$

are all internally stabilizing feedback laws.

Main Result (2)

Moreover, one particular fault tolerant controller is given by:

$$K = \left(\tilde{V}_0 - Q_2 N_1 - Q_3 N_2\right)^{-1} \times \left(\tilde{U}_{0,1} - Q_1 N_2 - Q_2 M \quad \tilde{U}_{0,2} + Q_1 N_1 - Q_3 M\right)$$

- Problem Formulation
- Preliminaries:
 - The Diophantine Equation
 - Strong Stabilization
- Simultaneous Stabilization
- A Parameterization
- Determining the Parameters
- Main Result
- Controller Structure
- Controller Order

Controller Structure

FTC: A Simultaneous Stabilization Result - p.32/34

Controller Structure

FTC: A Simultaneous Stabilization Result - p.32/34

Controller Structure

- Problem Formulation
- Preliminaries:
 - The Diophantine Equation
 - Strong Stabilization
- Simultaneous Stabilization
- A Parameterization
- Determining the Parameters
- Main Result
- Controller Structure
- Controller Order

Controller Order

Consider the following family of systems for $\varepsilon > 0$:

$$G_{\varepsilon}(s) = \begin{pmatrix} \frac{s-1}{(s-(1+\varepsilon))(s+1)} \\ \frac{s-1}{(s-(1+\varepsilon))(s+1)} \end{pmatrix}$$

Controller Order

Consider the following family of systems for $\varepsilon > 0$:

$$G_{\varepsilon}(s) = \left(\frac{\frac{s-1}{(s-(1+\varepsilon))(s+1)}}{\frac{s-1}{(s-(1+\varepsilon))(s+1)}}\right)$$

It can be shown that the controller order of any fault tolerant controller for this system has to satisfy

$$n > \frac{\log 2}{\log(1+\varepsilon)}$$

Controller Order

Consider the following family of systems for $\varepsilon > 0$:

$$G_{\varepsilon}(s) = \left(\frac{\frac{s-1}{(s-(1+\varepsilon))(s+1)}}{\frac{s-1}{(s-(1+\varepsilon))(s+1)}}\right)$$

It can be shown that the controller order of any fault tolerant controller for this system has to satisfy

$$n > \frac{\log 2}{\log(1+\varepsilon)}$$

This means that the controller order tends to infinity as ε tends to zero!