

Fault Tolerant Control

A Simultaneous Stabilization Result

Jakob [Stoustru](http://www.control.auc.dk/~jakob/)p

jakob@control.auc.dk

Department of Control Engineering

[Aalbor](file:C:/Docume~2/jakob/Dokumenter/video/erhverv.avi)g University

Denmark

- **Problem [Formulation](#page-2-0)**
- **[Preliminaries](#page-6-0):**
	- **The [Diophantine](#page-7-0) Equation**
	- **Strong [Stabilization](#page-12-0)**
- [Simultaneous](#page-14-0) Stabilization
- **A [Parameterization](#page-18-0)**
- [Determining](#page-24-0) the Parameters
- **Main [Resul](#page-30-0)t**
- [Controller](#page-34-0) Structure
- [Controller](#page-38-0) Order

- **Problem Formulation**
- **[Preliminaries](#page-6-0):**
	- **The [Diophantine](#page-7-0) Equation**
	- **Strong [Stabilization](#page-12-0)**
- [Simultaneous](#page-14-0) Stabilization
- **A** [Parameterization](#page-18-0)
- [Determining](#page-24-0) the Parameters
- **Main [Resul](#page-30-0)t**
- [Controller](#page-34-0) Structure
- [Controller](#page-38-0) Order

Problem Formulation (1)

Consider ^a system of the form:

$$
\begin{array}{rcl}\n\dot{x} &=& Ax + Bu \\
y_1 &=& C_1x \\
y_2 &=& C_2x \\
\vdots \\
y_p &=& C_px\n\end{array}
$$

Each of the p measurements $y_i, \, i=1,\ldots,p,$ is the output of ^a sensor, which can potentially fail.

Problem Formulation (2)

Consider a system of the form:

$$
\dot{x} = Ax + Bu
$$

\n
$$
\begin{aligned}\ny_1 &= C_1x \\
y_2 &= C_2x \\
\vdots \\
y_p &= C_px\n\end{aligned}
$$

Each of the p measurements $y_i, \, i=1,\ldots,p,$ is the output of ^a sensor, which can potentially fail. Does a *fixed* feedback compensator exist that stabilizes the system even in the faulty situations?

Problem Formulation (3)

To be more precise, we are looking for ^astabilizing dynamic compensator $u=K$ an foo $u=K(s)y$ with the property, that the following feedback laws:

$$
u = K(s) \begin{pmatrix} 0 \\ y_2 \\ \vdots \\ y_p \end{pmatrix}, u = K(s) \begin{pmatrix} y_1 \\ 0 \\ \vdots \\ y_p \end{pmatrix}, \dots, u = K(s) \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ 0 \end{pmatrix}
$$

are also internally stabilizing, i.e. that both the nominal system as well as each of the systems resulting from one of the sensors failing are all stabilized by $K(s).$

- **Problem [Formulation](#page-2-0)**
- **Preliminaries:**
	- **The [Diophantine](#page-7-0) Equation**
	- **Strong [Stabilization](#page-12-0)**
- [Simultaneous](#page-14-0) Stabilization
- **A [Parameterization](#page-18-0)**
- [Determining](#page-24-0) the Parameters
- **D** Main [Resul](#page-30-0)t
- [Controller](#page-34-0) Structure
- [Controller](#page-38-0) Order

- **Problem [Formulation](#page-2-0)**
- **[Preliminaries](#page-6-0):**
	- **The Diophantine Equation**
	- **Strong [Stabilization](#page-12-0)**
- [Simultaneous](#page-14-0) Stabilization
- **A [Parameterization](#page-18-0)**
- [Determining](#page-24-0) the Parameters
- **D** Main [Resul](#page-30-0)t
- [Controller](#page-34-0) Structure
- [Controller](#page-38-0) Order

The Diophantine Equation (1)

Let M and N be elements of a ring $\mathcal{L}.$ Then M
and N are conrime (i.e. $d \uparrow M$, $d \uparrow N \to d^{-1}$ \in and N are coprime (i.e. $d \uparrow M, \, d \uparrow N \Rightarrow d^{-1} \in \mathcal{L}$) Γ if and only if there exist $\tilde{U},\tilde{V}\in\mathcal{L}$ such that ˜

 $\tilde V M+$ $+ \tilde{U}N$ = $=u$, where $\mathcal U$ u is a unit, i.e. $u,u^{-1} \in \mathcal{L}$

The Diophantine Equation (1)

Let M and N be elements of a ring $\mathcal{L}.$ Then M
and N are conrime (i.e. $d \uparrow M$, $d \uparrow N \to d^{-1}$ \in and N are coprime (i.e. $d \uparrow M, \, d \uparrow N \Rightarrow d^{-1} \in \mathcal{L}$) Γ if and only if there exist $\tilde{U},\tilde{V}\in\mathcal{L}$ such that ˜

 $\tilde V M+$ $+ \tilde{U}N$ = $=u$, where $\mathcal U$ u is a unit, i.e. $u,u^{-1} \in \mathcal{L}$

Example: let ${\cal L}$ be the ring of integers. Since, 14 and 9 are coprime, there exist \tilde{V} and \tilde{U} , s.t.

 $14\tilde{V} + 9\tilde{U} = 1$

One possible choice is: $\tilde{V}=2,\,\tilde{U}$ =−3.

The Diophantine Equation (2)

Let $\mathcal L$ denote the ring of stable, proper, rational functions. Then M and N have no common
zeros in the right half plane if and only if the zeros in the right half plane if and only if thereexist $\tilde{U},\tilde{V}\in\mathcal{L}$ s.t.

> $\tilde V M+$ $+ \tilde{U}N$ $=u$ u where $u, u^ 1 \in \mathcal{L}$

i.e. u u is a stable minimum phase system of relative degree $0.$

The Diophantine Equation (3)

Assume that two proper rational functions G and V are always appointng to K are given. Then, it is always possible to K are given. Then, it is always possible to choose $M,N,\tilde{V},\tilde{U}\in\mathcal{L}$ such that $G=$ INTALNO $=N M^{-1}$ and $K=\tilde{V}$ <u>the contract of the contract </u> −1 $^{1}\tilde{U}$. In that case, K is an internally
an componentor for α if and only if stabilizing compensator for $G,$ if and only if

> $\tilde V M+$ $+ \tilde{U}N$ $=u$ u where $u, u^ 1 \in \mathcal{L}$

i.e. u u is a stable minimum phase system of relative degree $0.$

- **Problem [Formulation](#page-2-0)**
- **[Preliminaries](#page-6-0):**
	- **The [Diophantine](#page-7-0) Equation**
	- **Strong Stabilization**
- [Simultaneous](#page-14-0) Stabilization
- **A** [Parameterization](#page-18-0)
- [Determining](#page-24-0) the Parameters
- **Main [Resul](#page-30-0)t**
- [Controller](#page-34-0) Structure
- [Controller](#page-38-0) Order

Strong Stabilization

Let $A(s),\ B(s)$ be stable proper transfer functions. Then there exists ^a stable propertransfer function $Q(s)$ such that the function

 $A(s) + B(s) Q(s)$

is ^a unit in the ring of stable proper rational functions, if and only if the sign of

 $A(z_\mathsf{ip})$

is constant for all z_ip $\mathsf{p} \in \{s$ $s \in \mathcal{R}$ $s \in \mathcal{R}$ $s \in \mathcal{R}$ $+\infty$ ∞ : $B(s) = 0$.

- **Problem [Formulation](#page-2-0)**
- **[Preliminaries](#page-6-0):**
	- **The [Diophantine](#page-7-0) Equation**
	- **Strong [Stabilization](#page-12-0)**
- **Simultaneous Stabilization**
- **A [Parameterization](#page-18-0)**
- [Determining](#page-24-0) the Parameters
- **D** Main [Resul](#page-30-0)t
- [Controller](#page-34-0) Structure
- [Controller](#page-38-0) Order

Simultaneous Stabilization (1)

Consider the following single-input dual-output system:

$$
G = NM^{-1}(s) = \begin{pmatrix} N_1(s) \\ N_2(s) \end{pmatrix} M^{-1}(s)
$$

(where $N,M\in\mathcal{L}$ are coprime) and assume that
an internally stabilizing compensator is given: an internally stabilizing compensator is given:

$$
K_0 = \tilde{V}_0^{-1} \tilde{U}_0 = \tilde{V}_0^{-1} \left(\tilde{U}_{0,1} \tilde{U}_{0,2} \right)
$$

(where $\tilde{V}_0, \tilde{U}_0 \in \mathcal{L}$ are coprime) satisfying:

$$
\tilde{V}_0 M - \tilde{U}_0 N = \tilde{V}_0 M - \tilde{U}_{0,1} N_1 - \tilde{U}_{0,2} N_2 = 1
$$

Simultaneous Stabilization (2)

If the sensor corresponding to one of the outputs fails, the controller \tilde{V} 1 $\left(\begin{array}{cc} \tilde{U}_1 & \tilde{U}_2 \end{array}\right)$ has to stabilize ^a system of the form:

$$
G = \begin{pmatrix} N_1(s) \\ 0 \end{pmatrix} \quad \text{or} \quad G = \begin{pmatrix} 0 \\ N_2(s) \end{pmatrix}
$$

In the first case, the Diophantine equationbecomes

$$
\tilde{V}M - \left(\begin{array}{cc} \tilde{U}_1 & \tilde{U}_2 \end{array}\right) \left(\begin{array}{c} N_1(s) \\ 0 \end{array}\right) = \tilde{V}M - \tilde{U}_1N_1 = u
$$

Simultaneous Stabilization (3)

In summary, ^a compensator $K=\tilde{V}$ and only if 1 $\frac{1}{U}$ $=\tilde{V}$ 1 $\left(\begin{array}{cc} \tilde{U}_1 & \tilde{U}_2 \end{array}\right)$) is fault tolerant if

$$
\begin{array}{rcl}\n\tilde{V}M & - & \tilde{U}_1N_1 & - & \tilde{U}_2N_2 & = & u_1 \\
\tilde{V}M & - & \tilde{U}_2N_2 & = & u_2 \\
\tilde{V}M & - & \tilde{U}_1N_1 & = & u_3\n\end{array}
$$

where u_1, u_2, u_3 $u_1=1.$ $_3$ are units. (WLOG, assume that $_{1} = 1.$

- **Problem [Formulation](#page-2-0)**
- **[Preliminaries](#page-6-0):**
	- **The [Diophantine](#page-7-0) Equation**
	- **Strong [Stabilization](#page-12-0)**
- [Simultaneous](#page-14-0) Stabilization
- **A Parameterization**
- [Determining](#page-24-0) the Parameters \bullet
- **Main [Resul](#page-30-0)t**
- [Controller](#page-34-0) Structure
- [Controller](#page-38-0) Order

A Parameterization (1)

A crucial observation is that if $K_{0}% ^{N}(\theta)=\left\vert N_{0}\right\vert ^{2}$ $=\tilde{V}_0$ is a stabilizing compensator for the nominal 1 $0^ \Big(\tilde{U}_{0,1}$ $\left(\tilde{U}_{0,2}\right)$ system,

A Parameterization (1)

A crucial observation is that if $K_{0}% ^{N}(\theta)=\left\vert N_{0}\right\vert ^{2}$ $=\tilde{V}_0$ is a stabilizing compensator for the nominal 1 $0^ \Big(\tilde{U}_{0,1}$ $\left(\tilde{U}_{0,2}\right)$

system, so is

$$
K = \tilde{V}^{-1} \left(\begin{array}{cc} \tilde{U}_1 & \tilde{U}_2 \end{array} \right)
$$
 where

$$
\tilde{V} = \tilde{V}_0 - Q_2 N_1 - Q_3 N_2
$$
\n
$$
\tilde{U}_1 = \tilde{U}_{0,1} - Q_1 N_2 - Q_2 M
$$
\n
$$
\tilde{U}_2 = \tilde{U}_{0,2} + Q_1 N_1 - Q_3 M
$$
\nand Q_1, Q_2, Q_3 are arbitrary stable functions.

A Parameterization (2)

 $K \$ = \tilde{V} −1 $\Big(\begin{array}{c} \tilde{U}_1 \end{array}$ \tilde{U}_2 \mathbf{f}_2 $\Big)$ is seen to be nominally stabilizing since:

$$
\tilde{V}M - \tilde{U}_1N_1 - \tilde{U}_2N_2
$$
\n
$$
= \left(\tilde{V}_0 - Q_2N_1 - Q_3N_2\right)M
$$
\n
$$
- \left(\tilde{U}_{0,1} - Q_1N_2 - Q_2M\right)N_1
$$
\n
$$
- \left(\tilde{U}_{0,2} + Q_1N_1 - Q_3M\right)N_2
$$
\n
$$
= \tilde{V}_0M - \tilde{U}_{0,1}N_1 - \tilde{U}_{0,2}N_2 = 1
$$

Stability during faults (1)

This means that stability is obtained if and only if the compensator satisfies the two equations:

 \tilde{V}_0 $M-\,$ $-\left(\begin{array}{c} \tilde{U}_1 \end{array}\right.$ \tilde{U}_2 $\begin{pmatrix} 2 \end{pmatrix}$ $\left(\rule{-2pt}{10pt}\right.$ $N_{\rm 1}$ $\overline{0}$ **)** $=\tilde{V}_0M Q_2N_1M Q_3N_2M$ $- \, \tilde{U}_{0,1}N_1+Q_1N_2N_1+Q_2MN_1$ $=\tilde{V}_0 M - \tilde{U}_{0,1} N_1 + Q_1 N_2 N_1$ − $Q_3N_2M=u_1$

Stability during faults (2)

$$
\tilde{V}M - \left(\begin{array}{cc} \tilde{U}_1 & \tilde{U}_2 \end{array}\right) \begin{pmatrix} 0 \\ N_2 \end{pmatrix}
$$

= $\tilde{V}_0M - \tilde{U}_{0,2}N_2 - Q_1N_1N_2 - Q_2N_1M = u_2$

where $u_1,\,u_2$ rational functions (i.e. stable proper functions $_2$ are units in the ring of stable proper with stable proper inverses).

- **Problem [Formulation](#page-2-0)**
- **[Preliminaries](#page-6-0):**
	- **The [Diophantine](#page-7-0) Equation**
	- **Strong [Stabilization](#page-12-0)**
- [Simultaneous](#page-14-0) Stabilization
- **A** [Parameterization](#page-18-0)
- **Determining the Parameters**
- **Main [Resul](#page-30-0)t**
- [Controller](#page-34-0) Structure
- [Controller](#page-38-0) Order

Selecting Q¹

Note, that it is possible to determine ^a stableproper function Q_1 , such that:

$$
Q_1(s)N_1(s)N_2(s) - \tilde{U}_{0,1}(s)N_1(s)\Big|_{s=z_{\text{ip}}} = \frac{1}{2}
$$

for every value of $z_{\mathsf{ip}} \in \{z \in \mathcal{R}_{+\infty} \, : \, M(z) = 0\}$, since $N_1(z_\mathsf{ip})N_2(z_\mathsf{ip})$ can not be zero for $M(z_\mathsf{ip}) = 0$ due to coprimeness of M and N_1 and
of M and N_2 . To determine Ω_2 in practice can be of M and N_2 . To determine Q_1 in practice can be
done by a standard rational internolation done by ^a standard rational interpolation.

Determining Q³ **(1)**

Returning to the equation:

$$
\tilde{V}_0 M - \tilde{U}_{0,1} N_1 + Q_1 N_2 N_1 - Q_3 N_2 M = u_1
$$

For fixed Q_1 this can be solved by stable Q_3 if and only if (strong [stabilization](#page-13-0) result)

$$
\left.\tilde{V}_0M-\tilde{U}_{0,1}N_1+Q_1N_2N_1\right|_{s=z_{\text{ip}}}
$$

has constant sign for every value of z_ip $P_P \in \{z \in \mathcal{R}_{+\infty} \, : \, M(z) = 0 \vee N_2(z) = 0\}.$

Determining Q³ **(2)**

For $M(z_\mathsf{ip})=0$ we obtain: $\tilde{V}_0(s)M(s)$ $-\left.\tilde{U}_{0,1}(s)N_{1}(s)+Q_{1}(s)N_{2}(s)N_{1}(s)\right|_{s=z_{\mathsf{ip}}}$ $= \left. \begin{array}{l l} -\tilde{U}_{0,1}(s) N_1(s) + Q_1(s) N_2(s) N_1(s) \end{array} \right|_{s={z_{\sf ip}}} = \frac{1}{2}$

For $N_2(z_{\mathsf{ip}}) = 0$ we get: $\tilde{V}_0(s)M(s)$ $-\left.\tilde{U}_{0,1}(s)N_{1}(s)+Q_{1}(s)N_{2}(s)N_{1}(s)\right|_{s=z_{\mathsf{ip}}}$ = $= \left. \tilde{V}_0(s) M(s) - \tilde{U}_{0,1}(s) N_1(s) \right|_{s = z_{\sf ip}} = 1$

Determining Q³ **(3)**

To determine Q_3 in practice, one approach is first to find u_1 that interpolates all right half plane conditions (not just the positive half line) inducedby N_2 and $M.$ Then Q_3 can be computed by:

$$
Q_3=\frac{\tilde{V}_0M-\tilde{U}_{0,1}N_1+Q_1N_2N_1-u_1}{N_2M}
$$

which is ^a stable proper solution to

 $\tilde{V}_0 M - \tilde{U}_{0,1} N_1 + Q_1 N_2 N_1 - Q_3 N_2 M = u_1$

Determining Q_2

Similar considerations regarding the equation $\tilde{V}_0 M - \tilde{U}_{0,2} N_2 - Q_1 N_1 N_2 - Q_2 N_1 M = u_2$ proves the existence of a stable solution Q_2 , e.g. in terms of the formula:

 Q_{2} $_2 =$ $=\frac{\tilde{V}_0M-\tilde{U}_{0,2}N_2-Q_1N_1N_2-u_2}{N_1M}$ where u_2 has been chosen such that $u_2(z)$ = $= \tilde{V}_0(z) M(z) - \tilde{U}_{0,2}(z) N_2(z) - Q_1(z) N_1(z) N_2(z)$ for every $z \in \{z \in C_+: N_1(z) = 0 \vee M(z) = 0\}.$

- **Problem [Formulation](#page-2-0)**
- **[Preliminaries](#page-6-0):**
	- **The [Diophantine](#page-7-0) Equation**
	- **Strong [Stabilization](#page-12-0)**
- [Simultaneous](#page-14-0) Stabilization
- **A [Parameterization](#page-18-0)**
- [Determining](#page-24-0) the Parameters
- **Main Result**
- [Controller](#page-34-0) Structure
- [Controller](#page-38-0) Order

Main Result (1)

THEOREM. Assume ^a system has the form:

 \dot{x} = $= Ax + Bu$ $y_1~=~C_1x$ \sim \sim \sim \sim $y_2\;=\;$ C_2x

 (A,B) is stabilizable $\left(C_{1},A\right)$ is detectable (C_2,A) is detectable

Main Result (1)

THEOREM. Assume ^a system has the form:

 \dot{x} = $= Ax + Bu$ (A,B) is stabilizable $\left(C_{1},A\right)$ is detectable $y_1~=~C_1x$ \sim \sim \sim (C_2,A) is detectable $y_2\;=\;$ C_2x

Then there exists a fault tolerant controller $K(s)$ such that

$$
u = K\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, u = K\begin{pmatrix} y_1 \\ 0 \end{pmatrix}, u = K\begin{pmatrix} 0 \\ y_2 \end{pmatrix},
$$

are all internally stabilizing feedback laws.

Main Result (2)

Moreover, one particular fault tolerant controlleris given by:

$$
K = \left(\tilde{V}_0 - Q_2 N_1 - Q_3 N_2\right)^{-1}
$$

\$\times \left(\tilde{U}_{0,1} - Q_1 N_2 - Q_2 M \tilde{U}_{0,2} + Q_1 N_1 - Q_3 M \right)\$

- **Problem [Formulation](#page-2-0)**
- **[Preliminaries](#page-6-0):**
	- **The [Diophantine](#page-7-0) Equation**
	- **Strong [Stabilization](#page-12-0)**
- [Simultaneous](#page-14-0) Stabilization
- **A** [Parameterization](#page-18-0)
- [Determining](#page-24-0) the Parameters
- Main [Resul](#page-30-0)t \bullet
- **Controller Structure**
- [Controller](#page-38-0) Order

Controller Structure

FTC: A Simultaneous Stabilization Result – p.32/34

Controller Structure

Controller Structure

- **Problem [Formulation](#page-2-0)**
- **[Preliminaries](#page-6-0):**
	- **The [Diophantine](#page-7-0) Equation**
	- **Strong [Stabilization](#page-12-0)**
- [Simultaneous](#page-14-0) Stabilization
- **A [Parameterization](#page-18-0)**
- [Determining](#page-24-0) the Parameters
- **D** Main [Resul](#page-30-0)t
- [Controller](#page-34-0) Structure
- **Controller Order**

Controller Order

Consider the following family of systems for $\varepsilon>0$:

$$
G_{\varepsilon}(s) = \begin{pmatrix} \frac{s-1}{(s-(1+\varepsilon))(s+1)} \\ \frac{s-1}{(s-(1+\varepsilon))(s+1)} \end{pmatrix}
$$

Controller Order

Consider the following family of systems for $\varepsilon>0$:

$$
G_{\varepsilon}(s) = \begin{pmatrix} \frac{s-1}{(s-(1+\varepsilon))(s+1)} \\ \frac{s-1}{(s-(1+\varepsilon))(s+1)} \end{pmatrix}
$$

 It can be shown that the controller order of anyfault tolerant controller for this system has tosatisfy

$$
n > \frac{\log 2}{\log(1+\varepsilon)}
$$

Controller Order

Consider the following family of systems for $\varepsilon>0$:

$$
G_{\varepsilon}(s) = \begin{pmatrix} \frac{s-1}{(s-(1+\varepsilon))(s+1)} \\ \frac{s-1}{(s-(1+\varepsilon))(s+1)} \end{pmatrix}
$$

 It can be shown that the controller order of anyfault tolerant controller for this system has tosatisfy

$$
n > \frac{\log 2}{\log(1+\varepsilon)}
$$

 This means that the controller order tends toinfinity as ε tends to zero!