
arduino
notebook

 a beginner’s reference

brian w. evans

Arduino Notebook: A Beginner’s Reference
Written and compiled by Brian W. Evans

With information or inspiration taken from:
http://www.arduino.cc
http://www.wiring.org.co
http://www.arduino.cc/en/Booklet/HomePage
http://cslibrary.stanford.edu/101/

Including material written by:
Massimo Banzi
Hernando Barragin
David Cuartielles
Tom Igoe
Todd Kurt
David Mellis
and others

Published:
First Edition August 2007

12c bnao
This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License.

To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Or send a letter to:

Creative Commons
171 Second Street, Suite 300
San Francisco, California, 94105, USA

contents

structure

structure 7

setup() 7

loop() 7

functions 8

{} curly braces 9

; semicolon 9

/*… */ block comments 10

// line comments 10

variables

variables 11

variable declaration 12

variable scope 13

datatypes

byte 14

int 14

long 14

float 14

arrays 15

arithmetic

arithmetic 16

compound assignments 16

comparison operators 17

logical operators 17

constants

constants 18

true/false 18

high/low 18

input/output 18

flow control

if 19

if… else 20

for 21

while 22

do… while 22

digital i/o

pinMode(pin, mode) 23

digitalRead(pin) 24

digitalWrite(pin, value) 24

analog i/o

analogRead(pin) 25

analogWrite(pin, value) 26

time

delay(ms) 27

millis() 27

math

min(x, y) 27

max(x, y) 27

random

randomSeed(seed) 28

random(min, max) 28

serial

Serial.begin(rate) 29

Serial.println(data) 29

appendix

digital output 32

digital input 33

high current output 34

pwm output 35

potentiometer input 36

variable resistor input 37

servo output 38

preface

This notebook serves as a convenient, easy to use companion for the beginner
as they learn to program the Arduino microcontroller. It is intended to be a
secondary reference to be used alongside other websites, books, workshops, or
classes. To keep it simple, certain exclusions have lead to a slight emphasis on
using the microcontroller for standalone purposes and, for example, leaves out
the more complex arrays or the advanced forms of serial communication.

Beginning with the basic structure of Arduino's C derived programming
language, this reference continues on to describe the most common elements
and illustrate their usage with examples and code fragments. This includes
many functions of the core library followed by an appendix with sample
schematics and starter programs. The format compliments O’Sullivan and Igoe’s
Physical Computing where possible.

For an introduction to the Arduino and interactive design, refer to Banzi’s
Getting Started with Arduino, aka the Arduino Booklet. For the brave few
interested in the intricacies of programming in C, Kernighan and Ritchie’s The C
Programming Language, second edition, as well as Prinz and Crawford’s C in a
Nutshell, provide some insight into the programming syntax.

Above all else, this notebook would not be possible without the great community
of makers and shear mass of original material to be found in the Arduino
website, playground, and forum at http://www.arduino.cc.

structure
The basic structure of the Arduino programming language is fairly simple and
runs in at least two parts. These two required parts, or functions, enclose blocks
of statements.

void setup()
{
 statements;
}

void loop()
{
 statements;
}

Where setup() is the preparation, loop() is the execution. Both functions are
required for the program to work.

The setup function should follow the declaration of any variables at the very
beginning of the program. It is the first function to run in the program, is run only
once, and is used to set pinMode or initialize serial communication.

The loop function follows next and is the code to be executed continuously –
reading inputs, triggering outputs, etc. This function is the core of all Arduino
programs and does the bulk of the work.

setup()
The setup() function is called once when your program starts. Use it to initialize
pin modes, or begin serial. It must be included in a program even if there are no
statements to run.

void setup()
{
 pinMode(pin, OUTPUT); // sets the 'pin' as output
}

loop()
After calling the setup() function, the loop() function does precisely what its
name suggests, and loops consecutively, allowing your program to change,
respond, and control the Arduino board.

void loop()
{
 digitalWrite(pin, HIGH); // turns 'pin' on
 delay(1000); // pauses for one second
 digitalWrite(pin, LOW); // turns 'pin' off
 delay(1000); // pauses for one second
}

structure | 7

functions
A function is a block of code that has a name and a block of statements that are
executed when the function is called. The functions void setup() and void loop()
have already been discussed and other built-in functions will be discussed later.

Custom functions can be written to perform repetitive tasks and reduce clutter in
a program. Functions are declared by first declaring the function type. This is the
type of value to be returned by the function such as 'int' for an integer type
function. If no value is to be returned the function type would be void. After type,
declare the name given to the function and in parenthesis any parameters being
passed to the function.

type functionName(parameters)
{
 statements;
}

The following integer type function delayVal() is used to set a delay value in a
program by reading the value of a potentiometer. It first declares a local variable
v, sets v to the value of the potentiometer which gives a number between 0-
1023, then divides that value by 4 for a final value between 0-255, and finally
returns that value back to the main program.

int delayVal()
{
 int v; // create temporary variable 'v'
 v = analogRead(pot); // read potentiometer value
 v /= 4; // converts 0-1023 to 0-255
 return v; // return final value
}

8 | structure

{} curly braces
Curly braces (also referred to as just "braces" or "curly brackets") define the
beginning and end of function blocks and statement blocks such as the void
loop() function and the for and if statements.

type function()
{
 statements;
}

An opening curly brace { must always be followed by a closing curly brace }.
This is often referred to as the braces being balanced. Unbalanced braces can
often lead to cryptic, impenetrable compiler errors that can sometimes be hard
to track down in a large program.

The Arduino environment includes a convenient feature to check the balance of
curly braces. Just select a brace, or even click the insertion point immediately
following a brace, and its logical companion will be highlighted.

; semicolon
A semicolon must be used to end a statement and separate elements of the
program. A semicolon is also used to separate elements in a for loop.

int x = 13; // declares variable 'x' as the integer 13

Note: Forgetting to end a line in a semicolon will result in a compiler error. The
error text may be obvious, and refer to a missing semicolon, or it may not. If an
impenetrable or seemingly illogical compiler error comes up, one of the first
things to check is a missing semicolon, near the line where the compiler
complained.

structure | 9

/*… */ block comments
Block comments, or multi-line comments, are areas of text ignored by the
program and are used for large text descriptions of code or comments that help
others understand parts of the program. They begin with /* and end with */ and
can span multiple lines.

/* this is an enclosed block comment
 don’t forget the closing comment -
 they have to be balanced!
*/

Because comments are ignored by the program and take no memory space
they should be used generously and can also be used to “comment out” blocks
of code for debugging purposes.

Note: While it is possible to enclose single line comments within a block
comment, enclosing a second block comment is not allowed.

// line comments
Single line comments begin with // and end with the next line of code. Like block
comments, they are ignored by the program and take no memory space.

// this is a single line comment

Single line comments are often used after a valid statement to provide more
information about what the statement accomplishes or to provide a future
reminder.

10 | structure

variables
A variable is a way of naming and storing a numerical value for later use by the
program. As their namesake suggests, variables are numbers that can be
continually changed as opposed to constants whose value never changes. A
variable needs to be declared and optionally assigned to the value needing to
be stored. The following code declares a variable called inputVariable and then
assigns it the value obtained on analog input pin 2:

int inputVariable = 0; // declares a variable and
 // assigns value of 0
inputVariable = analogRead(2); // set variable to value of
 // analog pin 2

‘inputVariable’ is the variable itself. The first line declares that it will contain an
int, short for integer. The second line sets the variable to the value at analog pin
2. This makes the value of pin 2 accessible elsewhere in the code.

Once a variable has been assigned, or re-assigned, you can test its value to see
if it meets certain conditions, or you can use its value directly. As an example to
illustrate three useful operations with variables, the following code tests whether
the inputVariable is less than 100, if true it assigns the value 100 to
inputVariable, and then sets a delay based on inputVariable which is now a
minimum of 100:

if (inputVariable < 100) // tests variable if less than 100
{
 inputVariable = 100; // if true assigns value of 100
}
delay(inputVariable); // uses variable as delay

Note: Variables should be given descriptive names, to make the code more
readable. Variable names like tiltSensor or pushButton help the programmer
and anyone else reading the code to understand what the variable represents.
Variable names like var or value, on the other hand, do little to make the code
readable and are only used here as examples. A variable can be named any
word that is not already one of the keywords in the Arduino language.

variables | 11

variable declaration
All variables have to be declared before they can be used. Declaring a variable
means defining its value type, as in int, long, float, etc., setting a specified name,
and optionally assigning an initial value. This only needs to be done once in a
program but the value can be changed at any time using arithmetic and various
assignments.

The following example declares that inputVariable is an int, or integer type, and
that its initial value equals zero. This is called a simple assignment.

int inputVariable = 0;

A variable can be declared in a number of locations throughout the program and
where this definition takes place determines what parts of the program can use
the variable.

12 | variables

variable scope
A variable can be declared at the beginning of the program before void setup(),
locally inside of functions, and sometimes within a statement block such as for
loops. Where the variable is declared determines the variable scope, or the
ability of certain parts of a program to make use of the variable.

A global variable is one that can be seen and used by every function and
statement in a program. This variable is declared at the beginning of the
program, before the setup() function.

A local variable is one that is defined inside a function or as part of a for loop. It
is only visible and can only be used inside the function in which it was declared.
It is therefore possible to have two or more variables of the same name in
different parts of the same program that contain different values. Ensuring that
only one function has access to its variables simplifies the program and reduces
the potential for programming errors.

The following example shows how to declare a few different types of variables
and demonstrates each variable’s visibility:

int value; // 'value' is visible
 // to any function
void setup()
{
 // no setup needed
}

void loop()
{
 for (int i=0; i<20;) // 'i' is only visible
 { // inside the for-loop
 i++;
 }
 float f; // 'f' is only visible
} // inside loop

variables | 13

byte
Byte stores an 8-bit numerical value without decimal points. They have a range
of 0-255.

byte someVariable = 180; // declares 'someVariable'
 // as a byte type

int
Integers are the primary datatype for storage of numbers without decimal points
and store a 16-bit value with a range of 32,767 to -32,768.

int someVariable = 1500; // declares 'someVariable'
 // as an integer type

Note: Integer variables will roll over if forced past their maximum or minimum
values by an assignment or comparison. For example, if x = 32767 and a
subsequent statement adds 1 to x, x = x + 1 or x++, x will then rollover
and equal -32,768.

long
Extended size datatype for long integers, without decimal points, stored in a 32-
bit value with a range of 2,147,483,647 to -2,147,483,648.

long someVariable = 90000; // declares 'someVariable'
 // as a long type

float
A datatype for floating-point numbers, or numbers that have a decimal point.
Floating-point numbers have greater resolution than integers and are stored as
a 32-bit value with a range of 3.4028235E+38 to -3.4028235E+38.

float someVariable = 3.14; // declares 'someVariable'
 // as a floating-point type

Note: Floating-point numbers are not exact, and may yield strange results when
compared. Floating point math is also much slower than integer math in
performing calculations, so should be avoided if possible.

14 | datatypes

arrays
An array is a collection of values that are accessed with an index number. Any
value in the array may be called upon by calling the name of the array and the
index number of the value. Arrays are zero indexed, with the first value in the
array beginning at index number 0. An array needs to be declared and optionally
assigned values before they can be used.

int myArray[] = {value0, value1, value2...}

Likewise it is possible to declare an array by declaring the array type and size
and later assign values to an index position:

int myArray[5]; // declares integer array w/ 6 positions
myArray[3] = 10; // assigns the 4th index the value 10

To retrieve a value from an array, assign a variable to the array and index
position:

x = myArray[3]; // x now equals 10

Arrays are often used in for loops, where the increment counter is also used as
the index position for each array value. The following example uses an array to
flicker an LED. Using a for loop, the counter begins at 0, writes the value
contained at index position 0 in the array flicker[], in this case 180, to the PWM
pin 10, pauses for 200ms, then moves to the next index position.

int ledPin = 10; // LED on pin 10
byte flicker[] = {180, 30, 255, 200, 10, 90, 150, 60};
 // array of 8 different values
void setup()
{
 pinMode(ledPin, OUTPUT); // sets OUTPUT pin
}

void loop()
{
 for(int i=0; i<9; i++) // loop equals number
 { // of values in array
 analogWrite(ledPin, flicker[i]); // write index value
 delay(200); // pause 200ms
 }
}

datatypes | 15

arithmetic
Arithmetic operators include addition, subtraction, multiplication, and division.
They return the sum, difference, product, or quotient (respectively) of two
operands.

y = y + 3;
x = x - 7;
i = j * 6;
r = r / 5;

The operation is conducted using the data type of the operands, so, for
example, 9 / 4 results in 2 instead of 2.25 since 9 and 4 are ints and are
incapable of using decimal points. This also means that the operation can
overflow if the result is larger than what can be stored in the data type.

If the operands are of different types, the larger type is used for the calculation.
For example, if one of the numbers (operands) are of the type float and the
other of type integer, floating point math will be used for the calculation.

Choose variable sizes that are large enough to hold the largest results from your
calculations. Know at what point your variable will rollover and also what
happens in the other direction e.g. (0 - 1) OR (0 - - 32768). For math that
requires fractions, use float variables, but be aware of their drawbacks: large
size, slow computation speeds.

Note: Use the cast operator e.g. (int)myFloat to convert one variable type to
another on the fly. For example, i = (int)3.6 will set i equal to 3.

compound assignments
Compound assignments combine an arithmetic operation with a variable
assignment. These are commonly found in for loops as described later. The
most common compound assignments include:

x ++ // same as x = x + 1, or increments x by +1
x -- // same as x = x - 1, or decrements x by -1
x += y // same as x = x + y, or increments x by +y
x -= y // same as x = x - y, or decrements x by -y
x *= y // same as x = x * y, or multiplies x by y
x /= y // same as x = x / y, or divides x by y

Note: For example, x *= 3 would triple the old value of x and re-assign the
resulting value to x.

16 | arithmetic

comparison operators
Comparisons of one variable or constant against another are often used in if
statements to test if a specified condition is true. In the examples found on the
following pages, ?? is used to indicate any of the following conditions:

x == y // x is equal to y
x != y // x is not equal to y
x < y // x is less than y
x > y // x is greater than y
x <= y // x is less than or equal to y
x >= y // x is greater than or equal to y

logical operators
Logical operators are usually a way to compare two expressions and return a
TRUE or FALSE depending on the operator. There are three logical operators,
AND, OR, and NOT, that are often used in if statements:

Logical AND:
if (x > 0 && x < 5) // true only if both
 // expressions are true

Logical OR:
if (x > 0 || y > 0) // true if either
 // expression is true

Logical NOT:
if (!x > 0) // true only if
 // expression is false

arithmetic | 17

constants
The Arduino language has a few predefined values, which are called constants.
They are used to make the programs easier to read. Constants are classified in
groups.

true/false
These are Boolean constants that define logic levels. FALSE is easily defined as
0 (zero) while TRUE is often defined as 1, but can also be anything else except
zero. So in a Boolean sense, -1, 2, and -200 are all also defined as TRUE.

if (b == TRUE);
{
 doSomething;
}

high/low
These constants define pin levels as HIGH or LOW and are used when reading
or writing to digital pins. HIGH is defined as logic level 1, ON, or 5 volts while
LOW is logic level 0, OFF, or 0 volts.

digitalWrite(13, HIGH);

input/output
Constants used with the pinMode() function to define the mode of a digital pin as
either INPUT or OUTPUT.

pinMode(13, OUTPUT);

18 | constants

if
if statements test whether a certain condition has been reached, such as an
analog value being above a certain number, and executes any statements
inside the brackets if the statement is true. If false the program skips over the
statement. The format for an if test is:

if (someVariable ?? value)
{
 doSomething;
}

The above example compares someVariable to another value, which can be
either a variable or constant. If the comparison, or condition in parentheses is
true, the statements inside the brackets are run. If not, the program skips over
them and continues on after the brackets.

Note: Beware of accidentally using ‘=’, as in if(x=10), while technically valid,
defines the variable x to the value of 10 and is as a result always true. Instead
use ‘==’, as in if(x==10), which only tests whether x happens to equal the
value 10 or not. Think of ‘=’ as “equals” opposed to ‘==’ being “is equal to”.

flow control | 19

if… else
if… else allows for ‘either-or’ decisions to be made. For example, if you wanted
to test a digital input, and do one thing if the input went HIGH or instead do
another thing if the input was LOW, you would write that this way:

if (inputPin == HIGH)
{
 doThingA;
}
else
{
 doThingB;
}

else can also precede another if test, so that multiple, mutually exclusive tests
can be run at the same time. It is even possible to have an unlimited number of
these else branches. Remember though, only one set of statements will be run
depending on the condition tests:

if (inputPin < 500)
{
 doThingA;
}
else if (inputPin >= 1000)
{
 doThingB;
}
else
{
 doThingC;
}

Note: An if statement simply tests whether the condition inside the parenthesis
is true or false. This statement can be any valid C statement as in the first
example, if (inputPin == HIGH). In this example, the if statement only
checks to see if indeed the specified input is at logic level high, or +5v.

20 | flow control

for
The for statement is used to repeat a block of statements enclosed in curly
braces a specified number of times. An increment counter is often used to
increment and terminate the loop. There are three parts, separated by
semicolons (;), to the for loop header:

for (initialization; condition; expression)
{
 doSomething;
}

The initialization of a local variable, or increment counter, happens first and only
once. Each time through the loop, the following condition is tested. If the
condition remains true, the following statements and expression are executed
and the condition is tested again. When the condition becomes false, the loop
ends.

The following example starts the integer i at 0, tests to see if i is still less than 20
and if true, increments i by 1 and executes the enclosed statements:

for (int i=0; i<20; i++) // declares i, tests if less
{ // than 20, increments i by 1
 digitalWrite(13, HIGH); // turns pin 13 on
 delay(250); // pauses for 1/4 second
 digitalWrite(13, LOW); // turns pin 13 off
 delay(250); // pauses for 1/4 second
}

Note: The C for loop is much more flexible than for loops found in some other
computer languages, including BASIC. Any or all of the three header elements
may be omitted, although the semicolons are required. Also the statements for
initialization, condition, and expression can be any valid C statements with
unrelated variables. These types of unusual for statements may provide
solutions to some rare programming problems.

flow control | 21

while
while loops will loop continuously, and infinitely, until the expression inside the
parenthesis becomes false. Something must change the tested variable, or the
while loop will never exit. This could be in your code, such as an incremented
variable, or an external condition, such as testing a sensor.

while (someVariable ?? value)
{
 doSomething;
}

The following example tests whether ‘someVariable’ is less than 200 and if true
executes the statements inside the brackets and will continue looping until
‘someVariable’ is no longer less than 200.

While (someVariable < 200) // tests if less than 200
{
 doSomething; // executes enclosed statements
 someVariable++; // increments variable by 1
}

do… while
The do loop is a bottom driven loop that works in the same manner as the while
loop, with the exception that the condition is tested at the end of the loop, so the
do loop will always run at least once.

do
{
 doSomething;
} while (someVariable ?? value);

The following example assigns readSensors() to the variable ‘x’, pauses for 50
milliseconds, then loops indefinitely until ‘x’ is no longer less than 100:

do
{
 x = readSensors(); // assigns the value of
 // readSensors() to x
 delay(50); // pauses 50 milliseconds
} while (x < 100); // loops if x is less than 100

22 | flow control

pinMode(pin, mode)
Used in void setup() to configure a specified pin to behave either as an
INPUT or an OUTPUT.

pinMode(pin, OUTPUT); // sets ‘pin’ to output

Arduino digital pins default to inputs, so they don't need to be explicitly declared
as inputs with pinMode(). Pins configured as INPUT are said to be in a high-
impedance state.

There are also convenient 20KΩ pullup resistors built into the Atmega chip that
can be accessed from software. These built-in pullup resistors are accessed in
the following manner:

pinMode(pin, INPUT); // set ‘pin’ to input
digitalWrite(pin, HIGH); // turn on pullup resistors

Pullup resistors would normally be used for connecting inputs like switches.
Notice in the above example it does not convert pin to an output, it is merely a
method for activating the internal pull-ups.

Pins configured as OUTPUT are said to be in a low-impedance state and can
provide 40 mA (milliamps) of current to other devices/circuits. This is enough
current to brightly light up an LED (don't forget the series resistor), but not
enough current to run most relays, solenoids, or motors.

Short circuits on Arduino pins and excessive current can damage or destroy the
output pin, or damage the entire Atmega chip. It is often a good idea to connect
an OUTPUT pin to an external device in series with a 470Ω or 1KΩ resistor.

digital i/o | 23

digitalRead(pin)
Reads the value from a specified digital pin with the result either HIGH or LOW.
The pin can be specified as either a variable or constant (0-13).

value = digitalRead(Pin); // sets 'value' equal to
 // the input pin

digitalWrite(pin, value)
Ouputs either logic level HIGH or LOW at (turns on or off) a specified digital pin.
The pin can be specified as either a variable or constant (0-13).

digitalWrite(pin, HIGH); // sets 'pin' to high

The following example reads a pushbutton connected to a digital input and turns
on an LED connected to a digital output when the button has been pressed:

int led = 13; // connect LED to pin 13
int pin = 7; // connect pushbutton to pin 7
int value = 0; // variable to store the read value

void setup()
{
 pinMode(led, OUTPUT); // sets pin 13 as output
 pinMode(pin, INPUT); // sets pin 7 as input
}

void loop()
{
 value = digitalRead(pin); // sets 'value' equal to
 // the input pin
 digitalWrite(led, value); // sets 'led' to the
} // button's value

24 | digital i/o

analogRead(pin)
Reads the value from a specified analog pin with a 10-bit resolution. This
function only works on the analog in pins (0-5). The resulting integer values
range from 0 to 1023.

value = analogRead(pin); // sets 'value' equal to 'pin'

Note: Analog pins unlike digital ones, do not need to be first declared as INPUT
nor OUTPUT.

analog i/o | 25

analogWrite(pin, value)
Writes a pseudo-analog value using hardware enabled pulse width modulation
(PWM) to an output pin marked PWM. On newer Arduinos with the ATmega168
chip, this function works on pins 3, 5, 6, 9, 10, and 11. Older Arduinos with an
ATmega8 only support pins 9, 10, and 11. The value can be specified as a
variable or constant with a value from 0-255.

analogWrite(pin, value); // writes 'value' to analog 'pin'

A value of 0 generates a steady 0 volts output at the specified pin; a value of
255 generates a steady 5 volts output at the specified pin. For values in
between 0 and 255, the pin rapidly alternates between 0 and 5 volts - the higher
the value, the more often the pin is HIGH (5 volts). For example, a value of 64
will be 0 volts three-quarters of the time, and 5 volts one quarter of the time; a
value of 128 will be at 0 half the time and 255 half the time; and a value of 192
will be 0 volts one quarter of the time and 5 volts three-quarters of the time.

Because this is a hardware function, the pin will generate a steady wave after a
call to analogWrite in the background until the next call to analogWrite (or a call
to digitalRead or digitalWrite on the same pin).

Note: Analog pins unlike digital ones, do not need to be first declared as INPUT
nor OUTPUT.

The following example reads an analog value from an analog input pin, converts
the value by dividing by 4, and outputs a PWM signal on a PWM pin:

int led = 10; // LED with 220 resistor on pin 10
int pin = 0; // potentiometer on analog pin 0
int value; // value for reading

void setup(){} // no setup needed

void loop()
{
 value = analogRead(pin); // sets 'value' equal to 'pin'
 value /= 4; // converts 0-1023 to 0-255
 analogWrite(led, value); // outputs PWM signal to led
}

26 | analog i/o

delay(ms)
Pauses your program for the amount of time as specified in milliseconds, where
1000 equals 1 second.

delay(1000); // waits for one second

millis()
Returns the number of milliseconds since the Arduino board began running the
current program as an unsigned long value.

value = millis(); // sets ‘value’ equal to millis()

Note: This number will overflow (reset back to zero), after approximately 9
hours.

min(x, y)
Calculates the minimum of two numbers of any data type and returns the
smaller number.

value = min(value, 100); // sets 'value' to the smaller of
 // 'value' or 100, ensuring that
 // it never gets above 100.

max(x, y)
Calculates the maximum of two numbers of any data type and returns the larger
number.

value = max(value, 100); // sets 'value' to the larger of
 // 'value' or 100, ensuring that
 // it is at least 100.

time and math | 27

randomSeed(seed)
Sets a value, or seed, as the starting point for the random() function.

randomSeed(value); // sets ‘value’ as the random seed

Because the Arduino is unable to create a truly random number, randomSeed
allows you to place a variable, constant, or other function into the random
function, which helps to generate more random "random” numbers. There are a
variety of different seeds, or functions, that can be used in this function including
millis() or even analogRead() to read electrical noise through an analog pin.

random(max)
random(min, max)
The random function allows you to return pseudo-random numbers within a
range specified by min and max values.

value = random(100, 200); // sets 'value' to a random
 // number between 100-200

Note: Use this after using the randomSeed() function.

The following example creates a random value between 0-255 and outputs a
PWM signal on a PWM pin equal to the random value:

int randNumber; // variable to store the random value
int led = 10; // LED with 220 resistor on pin 10

void setup() {} // no setup needed

void loop()
{
 randomSeed(millis()); // sets millis() as seed
 randNumber = random(255); // random number from 0-255
 analogWrite(led, randNumber); // outputs PWM signal
 delay(500); // pauses for half a second
}

28 | random

Serial.begin(rate)
Opens serial port and sets the baud rate for serial data transmission. The typical
baud rate for communicating with the computer is 9600 although other speeds
are supported.

void setup()
{
 Serial.begin(9600); // opens serial port
} // sets data rate to 9600 bps

Note: When using serial communication, digital pins 0 (RX) and 1 (TX) cannot
be used at the same time.

Serial.println(data)
Prints data to the serial port, followed by an automatic carriage return and line
feed. This command takes the same form as Serial.print(), but is easier for
reading data on the Serial Monitor.

Serial.println(analogValue); // sends the value of
 // 'analogValue'

Note: For more information on the various permutations of the Serial.println()
and Serial.print() functions please refer to the Arduino website.

The following simple example takes a reading from analog pin0 and sends this
data to the computer every 1 second.

void setup()
{
 Serial.begin(9600); // sets serial to 9600bps
}

void loop()
{
 Serial.println(analogRead(0)); // sends analog value
 delay(1000); // pauses for 1 second
}

serial | 29

appendix

digital output

This is the basic ‘hello world’ program used to simply turn something on or off. In
this example, an LED is connected to pin13, and is blinked every second. The
resistor may be omitted on this pin since the Arduino has one built in.

int ledPin = 13; // LED on digital pin 13

void setup() // run once
{
 pinMode(ledPin, OUTPUT); // sets pin 13 as output
}

void loop() // run over and over again
{
 digitalWrite(ledPin, HIGH); // turns the LED on
 delay(1000); // pauses for 1 second
 digitalWrite(ledPin, LOW); // turns the LED off
 delay(1000); // pauses for 1 second
}

32 | appendix

digital input

This is the simplest form of input with only two possible states: on or off. This
example reads a simple switch or pushbutton connected to pin2. When the
switch is closed the input pin will read HIGH and turn on an LED.

int ledPin = 13; // output pin for the LED
int inPin = 2; // input pin (for a switch)

void setup()
{
 pinMode(ledPin, OUTPUT); // declare LED as output
 pinMode(inPin, INPUT); // declare switch as input
}

void loop()
{
 if (digitalRead(inPin) == HIGH) // check if input is HIGH
 {
 digitalWrite(ledPin, HIGH); // turns the LED on
 delay(1000); // pause for 1 second
 digitalWrite(ledPin, LOW); // turns the LED off
 }
}

appendix | 33

high current output

Sometimes it is necessary to control more than 40ma from the Arduino. In this
case a MOSFET or transistor could be used to switch higher current loads. The
following example quickly turns on and off the MOSFET 5 times every second.

Note: The schematic shows a motor and protection diode but other non-
inductive loads could be used without the diode.

int outPin = 5; // output pin for the MOSFET

void setup()
{
 pinMode(outPin, OUTPUT); // sets pin5 as output
}

void loop()
{
 for (int i=0; i<=5; i++) // loops 5 times
 {
 digitalWrite(outPin, HIGH); // turns MOSFET on
 delay(250); // pauses 1/4 second
 digitalWrite(outPin, LOW); // turns MOSFET off
 delay(250); // pauses 1/4 second
 }
 delay(1000); // pauses 1 second
}

34 | appendix

pwm output

Pulsewidth Modulation (PWM) is a way to fake an analog output. This could be
used to dim and brighten an LED or later to control a servo motor. The following
example slowly brightens and dims an LED using for loops.

int ledPin = 9; // PWM pin for the LED

void setup(){} // no setup needed

void loop()
{
 for (int i=0; i<=255; i++) // ascending value for i
 {
 analogWrite(ledPin, i); // sets brightess level to i
 delay(100); // pauses for 100ms
 }
 for (int i=255; i>=0; i--) // descending value for i
 {
 analogWrite(ledPin, i); // sets brightess level to i
 delay(100); // pauses for 100ms
 }
}

appendix | 35

potentiometer input

Using a potentiometer and one of the Arduino’s analog-to-digital conversion
(ADC) pins it is possible to read analog values from 0-1024. The following
example uses a potentiometer to control an LED’s rate of blinking.

int potPin = 0; // input pin for the potentiometer
int ledPin = 13; // output pin for the LED

void setup()
{
 pinMode(ledPin, OUTPUT); // declare ledPin as OUTPUT
}

void loop()
{
 digitalWrite(ledPin, HIGH); // turns ledPin on
 delay(analogRead(potPin)); // pause program
 digitalWrite(ledPin, LOW); // turns ledPin off
 delay(analogRead(potPin)); // pause program
}

36 | appendix

variable resistor input

Variable resistors include CdS light sensors, thermistors, flex sensors, and so
on. This example makes use of a function to read the analog value and set a
delay time. This controls the speed at which an LED brightens and dims.

int ledPin = 9; // PWM pin for the LED
int analogPin = 0; // variable resistor on analog pin 0

void setup(){} // no setup needed

void loop()
{
 for (int i=0; i<=255; i++) // ascending value for i
 {
 analogWrite(ledPin, i); // sets brightess level to i
 delay(delayVal()); // gets time value and pauses
 }
 for (int i=255; i>=0; i--) // descending value for i
 {
 analogWrite(ledPin, i); // sets brightess level to i
 delay(delayVal()); // gets time value and pauses
 }
}

int delayVal()
{
 int v; // create temporary variable
 v = analogRead(analogPin); // read analog value
 v /= 8; // convert 0-1024 to 0-128
 return v; // returns final value
}

appendix | 37

servo output

Hobby servos are a type of motor that can move in a 180º arc and contain all
the necessary electronics. All that is needed is a pulse sent every 20ms. This
example uses a servoPulse function to move the servo from 10º -170º and back.

int servoPin = 2; // servo connected to digital pin 2
int myAngle; // angle of the servo roughly 0-180
int pulseWidth; // servoPulse function variable

void setup()
{
 pinMode(servoPin, OUTPUT); // sets pin 2 as output
}

void servoPulse(int servoPin, int myAngle)
{
 pulseWidth = (myAngle * 10) + 600; // determines delay
 digitalWrite(servoPin, HIGH); // set servo high
 delayMicroseconds(pulseWidth); // micro pause
 digitalWrite(servoPin, LOW); // set servo low
 delay(20); // refresh cycle
}

void loop()
{
 // servo starts at 10 deg and rotates to 170 deg
 for (myAngle=10; myAngle<=170; myAngle++)
 {
 servoPulse(servoPin, myAngle);
 }
 // servo starts at 170 deg and rotates to 10 deg
 for (myAngle=170; myAngle>=10; myAngle--)
 {
 servoPulse(servoPin, myAngle);
 }
}

38 | appendix

