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Abstract

It is significantly difficult to program dependable decentralised computer control
systems, since they need to integrate fault-tolerance and real-time with distribution.
In consequence, architects and programmers turn to new distributed system tools
and paradigms, such as: synchronised clocks, causal order, groups, membership,
replication, and so forth, to assist them in that task. Their inappropriate use, however,
may lead to unexpected inefficiency or failure of programs. There is a common link
between all these tools in real-time uses, and that is the role of time and order in
the behaviour of the system. The purpose of this paper is to establish the limits to
their use, in order that the models programmers rely on are not used beyond their
validity boundaries. This paper equates the time and order problems of real-time
programs in a unified manner. It recalls known fundamental limits of time and order
in distributed systems, and then it shows that these limits can be drastically relaxed,
if the system support (clock granularity, order discrimination) can be matched to the
ordering and timeliness requirements of programs. It finalises by giving concrete
guidelines about the use of clocks and about what a programmer can expect from an
ordering by distributed timestamps.

1 Introduction

Dependable distributed real-time systems are an active field of research[7,19,21]. Not
surprisingly, a number of techniques and programming paradigms used in integrated
real-time systems display shortcomings in distributed environments. In fact, it has proved
to be significantly difficult to integrate real-time and fault-tolerance with distribution. As
a consequence, architects and programmers turn to the new tools developed in the recent
years in distributed systems, seeking for solutions to build timely, correct and reliable
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programs. Amongst them, are synchronised clocks, causal and total order protocols,
group membership management, distributed replication techniques, and so forth.

Their inappropriate use may, however, lead to unexpected inefficiency, or even fail-
ure, of programs relying on those paradigms. Synchronous programming languages and
environments are popular in critical systems, since they give the programmer the abstrac-
tion of a completely synchronous perfect-clock-driven world, advancing in lock-step. In
a sense, they ignore the time issue, or assume it is solved by the run-time support, by
assuring, for example, that the computation resources have adequate power to fulfil the
requirements of the program. However, this model is an abstraction materialised by the
operating system, based on clocks and time-triggered lattices, which are imperfect.

On the other hand, perception of external events, reasonably well understoood
(metastability notwithstanding) in integrated systems, suffers from the imprecision of
clocks, in distributed settings, either time-triggered or event-triggered. In fact, in a new-
tonian timeframe, events happen in a global total order. Given infinitely precise instru-
mentation, one could always tell the order of any two events. Since this is not so, the
mapping of that order into computer-generated orderings needs to be understood by the
programmer. Some events will be considered simultaneous, others may even be ordered
inversely. That is, the programmer must understand the limits of the system he/she is
working with: what order discrimination can a given system guarantee, depending on
the separation of events or messages (can the system give me the order of two events
separated by 100ns?); what is the meaning of the ordering of any two events or messages,
based on their timestamps (did two events with timestamps 76 = Ta + 1 really occur in
that order in physical time?).

The purpose of this paper is not to derive new techniques for construction of depend-
able real-time programs. Although this is still a very active field of research, a number
of such techniques exist. However, these tools being made available to programmers, we
believe it important to establish the limits to their correct use. Issues of finite precision [4]
and granularity [13] have been pointed out earlier on as disturbance factors of theoretical
models based on fully-synchronous systems, and perfect and continuous clocks. A model
for real-time objects and a discussion on the impact of temporal uncertainties on total
order protocols has been advanced in [12]. In [22,26] it was proposed to match the granu-
larity of computer-derived orderings to the pace at which computer or physical processes
evolve (é6;-precedence). A recent work[9] discusses how to match sparse timebases to
6;-precedent sets of events.

This paper equates the time and order problems of real-time programs in a unified
manner. It raises or recalls fundamental limits of time and order in distributed system-
s, and then, with the help of some innovative concepts (é;-precedence and execution
granularity), it shows that these limits can be drastically relaxed, if the system support
(clock granularity, order discrimination) can be matched to the ordering and timeliness
requirements of programs.

The paper is organised as follows. In the next section, we start by motivating the prob-
lem of writing programs for decentralised and distributed control of real-time systems,
rather than doing it in a centralised way. In sections 3 and 4 we discuss the roles of time
and order in distributed real-time systems, under a unifying perspective, which we be-
lieve important for the understanding of the problem by system, protocol and application
programmers, and relevant to motivate the rest of the paper. For the purpose, we will
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Figure 1: Example of a problem for distributed control: (a) adhoc centralised solution; (b)
distributed solution

elaborate on material appearing in [24], expanded with some new results. In order not
to distract the reader from the main point, which is the applicability of these techniques,
we reduced the formalism to a minimum. We give informal proofs of the results in the
appendix. In sections 5 and 6 we discuss how applications can access time and order, and
which types of protocols provide them. We assume the reader is familiar with the basic
clock synchronisation [20] and causal and temporal ordering [17] concepts. The works
cited give an excellent insight into the problem.

2 Distributed control of real-time systems

Traditional computer control of related functions is centralised. The philosophy is to
organise the process in a supervisor controlling a set of variables or other controllers.
‘Distribution” in computerised control, when it exists, is mostly concerned with replacing
point-to-point cabling, yielding the so-called field buses, which are a kind of digital system
over a long wire: the central unit executes an automaton which reads information from
and sends commands to remote units on a polled, synchronised basis.

Figure 1a illustrates a cell composed of a conveyor, a pick-and-place robot, and a press
which forms the raw parts brought by the conveyor. For the traditional control engineer,
this will be handled by a single automaton, sequentially programmed, things happening
one at a time. The centralised control can be done on a network, via blocking RPCs issued
by the supervisor: there is a global thread of control which walks through the machines.

Let us imagine how it would be to handle this same task without a supervisor. Figure
1b illustrates the idea. The sites are autonomous. They work based on: local algorithms;
local information; information they receive from one another, disseminated (multicasted)
to the group of sites; cause-effect relations; the passage of time.

At this point the reader may ask why distribute, if a centralised solution is simpler and
well-known. A distributed system is modular and autonomous. In that sense, it reflects



better the natural way an automation system operates. Given the modularity of control,
it is easier to expand and modify, thus more versatile. Given the autonomy, it has more
parallelism, and is thus more performant and concurrent.

Besides, such a kind of architecture provides the foundation for distributed fault-
tolerance. The centralised solution is a single point of failure: if the supervisor fails, the
system stops. On the other hand, if it is made reliable, it has to be as reliable as required
by the most demanding component of the control system. That may be an overkill in most
situations. For example, in figure 1, the pressis probably a critical component, because it is
capable of damaging the robot. In a centralised solution, the supervisor would have to be
made dependable enough to prevent that from happening. In a distributed solution, one
might apply what is called incremental fault-tolerance, by having replication of hardware
and/or software only in the necessary measure [11,25]. In consequence, one could have
two or three replicas of the press controller on the network, connected to a voter, to ensure
it would act reliably, without having to replicate the other components. Finally, though
not in the very simple example of the figure, such a modular distributed system would
be capable of reconfiguring and/or exhibiting graceful degradation, upon the failure of
some components. With the adequate system support[11,25], the handling of the replicas
and the reconfiguration would be transparent to the programmer.

Having made the point about distribution, one must admit, however, that figure 1b
also discloses a greater complexity in the interactions between participants. In fact, it is
extremely difficult to provide any guarantee concerning dependability of such distributed
real-time control software, should it be programmed ad-hoc, over ad-hoc operating and
communication system support. In that case, it is most probable that the robot arm will
once (and forever more ...) be late getting from under the one-ton press while it goes
down, confirming the fears of the control engineer about distribution.

To motivate the reader to our proposal, we will use a few examples in figure 1b to
explain very simply how order and timing of events, i.e. knowledge about what caused
what and when in the system, can allow its components to operate autonomously. If sites
receive sequences of messages about system activity and timing they are able to build a
‘picture’ of the controlled system state and determine their own actions on a per-message
basis. However, with this simple programming technique the press would be utterly con-
tused should it receive the pi cked message before the part - at - pi ck- poi nt message.
So, those interactions have to take place in a cause-effect order. Take these examples:
if the robot in the figure receives an ordered and timely sequence of messages from the
conveyor it can predict its movement and velocity and start moving concurrently; on the
other hand, the conveyor can receive the pi cked and the st arti ng- pr ess messages
interchangeably, without any disturbance. The reason for the different behaviour in the
two examples is because messages are causally related in the first, so they can not be
delivered out of order, whereas in the second they are not related.

Dependable programming of distributed computer control systems should thus rely
on concepts and tools pertaining to the realm of:

e a notion of time common to all sites;
e temporal ordering of information;

e real-time and reliability guarantees in communications and processing [10,6,26,23];



e encapsulating constructs for the distributed and cooperating programs, from the
timeliness, dependability and functionality viewpoints, such as real-time object
groups [12];

e system structure for distributed fault-tolerance and real-time [11,7,25].

The sequel of the paper addresses the first two aspects. The following two sections
address the roles of time and order. The remaining sections discuss the implications of time
and order for distributed applications. Since we will be discussing mechanisms, rather
than systems, related work will be mentioned as appropriate in the sections concerned.
Nevertheless, a few systems of different types are worthwhile mentioning, for having
worked with some of the concepts advanced here: MARS, a time-triggered real-time
system [11]; the AAS air traffic control system [7]; the DELTA-4 XPA event-triggered real-
time system [25]. The reader may find details about reliable real-time communication and
processing, and about distributed fault-tolerance and real-time, in the works cited above.

3 The role of Time

Computing systems often use some notion of time, for example, for timeouts. These
relative time measurements can be achieved by local timers, even in real-time systems.
There is little to be said about the useful role of timers in distributed real-time systems,
except that the rate of all timers at the several sites must have a bounded deviation from
real-time, and thus from each other, during the execution of the longest distributed action
or protocol. This attribute is normally considered acquired by programmers, although
timer implementations are sometimes inaccurate and thus inadequate for real-time use.

Timers are unfortunately not enough for absolute time measurements, that is, the need to
locate the position of events in the timeline of a reference timebase. A clock representing
that timebase is necessary. When talking about distributed real-time systems, clocks
become also crucial for relative measurements, since they are the only way of measuring
distributed durations: something that starts in a site and ends in another. In both cases,
the notion of time, to be useful, must be global. To be reliable and precise, it should
also be available locally, and in a decentralised fashion, by means of local clocks which
are periodically adjusted to remain close to one another and, sometimes, to an external
reference. This is called clock synchronisation and will be referred to in section 5.

3.1 Agreement on time

Participant agreement on time, that is, the common knowledge that applications can have
about a global time in the system, is a fundamental paradigm of distributed real-time
programs, let alone centralised ones. Itis best achieved through synchronised local clocks,
for the reasons referred above, and it has two aspects:

e agreement on the time at which events occurred.

e agreement on the time to trigger actions;



The firstis concerned with the distributed recording (logging) of events. Such a distributed
log is instrumental to determine precedence relations through temporal order of sets of
events (further discussed in section 4). This is used, for example, for the a posteriori study
of alarm situations in power stations/networks or in process control plants, in order to
determine causes, trace propagations, discover spurious triggers.

The second is concerned with the synchronisation of the concurrent progress of a system.
For example, to disseminate the time to trigger both a change of points and a change
of lights in a railway crossing, by a distributed group of actuator representatives. The
specified time may be absolute, or it may be relative: the sender may specify “change
points at 5:03:35” or “[...] within 1sec of change of lights”. The latter distributed duration
is easily handled by global time, provided that the lights-change instant is disseminated.

Slightly different but important to mention is replica agreement on time. A replicated
computation which reads clocks to make time-dependent decisions, should do so in a
manner that all replicas get the same time, since synchronised clocks are not bit-by-bit
identical.

3.2 Timestamps

Events may be ordered with timestamps from a physical clock of granularity g, — the clock
‘tick”. The latter is normally a small time interval, in consequence, we would end-up with
a very fine-grained ordering. However, timestamps must be allocated in a distributed
way, so this must be done from a virtual global clock, formed by the set of local clocks.
These are not exactly equal: they differ at most by the clock precision, 7 [20], that is, the
greatest amount by which any two clocks may be separated at any time. This leads us
to the following remark, with regard to the use of clocks for distributed timestamping by
real-time programs:

Remark 1 Given two events a and b in different sites, timestamped by a global clock of granularity
gp, precision w, their temporal order can be guaranteed to be derived from the respective timestamps'
only if |ty — t,| > © + g,.

This result is a generalisation of Lamport’s result in [15], from continuous clocks to
events timestamped from granular clocks.

A granularity condition was introduced in [9]. If the virtual global clock were to have
the same (fine) granularity of the physical clock, the same event might receive timestamps
distant more than one tick, due to the effect of precision. While not incorrect per se, any
granularity below precision is not significant, very much like a weighing-machine accurate
to the gram giving weights in milligrams. A virtual clock is a software representation
of the physical clock, so it can easily have any granularity ¢, = p.g,, p integer. So the
granularity condition is translated into the following rule:

Rule 1 To ensure distributed timestamps of the same event are at most one tick apart, the granu-
larity g, of the global timebase must not be smaller than precision ©: g, > =.

Although stated as ¢, > 7 in [9], it also holds for g, = 7. We leave the demonstration
to the reader. Fulfilling the granularity condition is equivalent to obliging the same virtual
clock tick interval to have some overlap in all sites.

Yf |ty — ta] < 7, there may even be order inversion.
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4 The role of Order

Consider a distributed system such as the one in figure 1b: it is formed by processors with
no shared memory, no centralised control or clock, communicating only by exchanging
messages. It would be easy for an external (omniscient) observer to monitor the evolution
of the whole cell, so to speak visually. However, individual participants, being inside the
system, are subject to the uncertainty of its observation, since the latter is performed by
exchanging messages whose transmission delay and delay variation are not negligible.

This fact is a scaled-down version of the phenomena explained by the Relativity
Theory. In fact, given two events a and b, a can only be causally related to b, in the
measure where an information departing from a site where a occurred, arrives at the site
of b before b occurs. In other words, in a three-dimensional space-time diagram where a
occupies the vertex of an inverted "light cone" disposed along the time axis, for a to be
said to precede b, b must be inside the cone, as very well exemplified in [8]. An event a in
a computer system is therefore said to precede an event b (¢ — b) in those conditions [15].
Given this space-time relation, it may occur that neither of them can potentially cause the
other, in which case we say they are concurrent,ie. =(a — bV b — a). The consequence is
that they can appear as simultaneous, for example, by receiving the same timestamp, to a
computer program. If the events represent message arrivals, they can also be delivered to
the computer program in different orders. None of these cases would mean an incorrect
behaviour, from the point of view of precedence.

Note that a genuinely causal order is impossible to establish a priori. So the best that
can be done is order what we think may have a causal relationship, that is, to secure a
potential causal order, which is exactly the one defined by the precedence relation. There
are several ways of guaranteeing precedence or potential causal order — sometimes just
called causal order, for simplicity — in a distributed system. The most widely known
in distributed computing is through a logical order on the messages exchanged between
participants in a distributed computation [1]:

Logical Order: A message m1 is said to logically precede, (—l>), m?2 if: m1is
sent before m2, by the same participant or m1 is delivered * to the sender of m2 before

it sends m2 or m1 -5 m3 and m3 - m2.

In consequence, each participant will observe system evolution as a sequence of events
coming from the various sites (space-time view). The sequence may not be the same for all,
due to the relativity of their positions: a partial ordering on events. This is not disturbing

though. The cause-effect relation is the natural order of events in a system?°.

Going back to figure 1b, the sites can operate autonomously if they know what caused
what and when in the system, especially about events that concern their own activity. We
hope to have made clear that, for this purpose, information exchange must be reliable,
and must preserve the ordering of any two messages such that one could have caused
the other, that is, messages that are potentially-causally related. The most well known
logical precedence implementations are the “causal broadcast/multicast” type of proto-
cols using: logical clocks [15], piggybacking [1], context graphs [18], or vector clocks [2].

2We distinguish received, the act of a message arriving at a site, from delivered, the act of it being given to
the participant, since those instants may not be equivalent, for some ordering protocols.
30r in the universe, for that matter.



These protocols are non real-time though, and subject to anomalies, as discussed in the
next section. Such a system, besides the concern about its dependable programming,
must also have system-level fault-tolerance, which is outside the scope of this paper, but
relevant examples may be found in [11,7,19].

41 Anomalous behaviour

Logical order is based on a simple observation: if participants only exchange information
by sending and receiving messages, they can only define causality relations through those
messages. Two situations where this principle is violated and an anomalous behaviour
may occur:

e when participants exchange messages outside the ordering protocol;

e when the system interacts with the outside world.

In both cases there are hidden channels, that is, information flowing between partic-
ipants which is not controlled by the ordering discipline, so to speak, taking place in a
clandestine manner. The first anomaly is well-known, and its most common example is
the mixed use of a protocol for logical order and another protocol, for example, RPC. It is
shown in figure 2a: m; is issued because of the RPC that the top sender executed, so it is
preceded by m; nevertheless, for the protocol they are concurrent and m, happens to be
delivered before m1; m3 may carry the undesirable effects of this violation.

A less known but extremely common situation typical to real-time systems[25] is
concerned with the interaction between the computer system and the outside world, when
the hidden channels develop by means of feedback paths through the controlled process.
Distributed real-time systems are obviously prone to this anomaly, since the effect of one
controller’s actuator can propagate through the environment to, say, a sensor located in
another controller, competing, and possibly conflicting, with regular messages passed
between controllers. There is no way that logical order implementations know about these paths.
Figure 2b presents such an example. R; and R, represent some real-time entities residing
in the physical process under control, PHY: for example, R; controls a valve actuator, R,
handles a fluid sensor. CE and SUP are computing elements, SUP being a supervision unit
which detects anomalies and handles alarms. CE issues an output command message
to Ry, which in turn issues the physical actuation command (c;). A notification event is
generated in some other part of PHY in consequence (n;, in this case, fluid detection). This
event is read by Ry, who in response sends m, to notify SUP. Suppose the original message
m from CE meant open- val ve, and that it got delayed in communication, arriving later
than m, to SUP (the logical order protocol does not recognise any relationship between
them). Given that m; meansf | ui d-f| ow ng, SUP will most probably issue a | eakage!
alarm, whereas the system is functioning perfectly.

4.2 Temporal order

The solution for these situations consists in securing precedence through temporal order,
for example with timestamps, as discussed in section 3. Applying Rule 1 affects Remark 1
as follows:
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Figure 2: Anomalous behaviour examples: (a) RPC; (b) physical feedback

Remark 2 Given two events a and b in different sites, timestamped by a global clock of precision
7, and granularity g, > =, their temporal order can be guaranteed to be asserted from the respective

timestamps only if |t, — t,| > © + g,.

The tightest value for g¢,, g, = 7, yields |t; — t,| > 2g,, the condition stipulated by
the authors of [9] to remove what they called imprecision effect. Remark?2 generalises
this formulation for values of ¢, other than 7, making it precise for all situations. This is
relevant when, as will be shown ahead, granularity gets to be much greater than precision.
In that case, i.e. considering g, > m, our expression shows that the order is as fine as
¢y + 7 ~ g,, instead of 2¢,. Figure 3 illustrates Remark 2, by depicting the limit situation:
the clocks C'1 and C2 of two sites are separated by 7; a occurs immediately after tick 1 in
C'1. For b to be ordered after a, it must receive a timestamp in tick 2. In consequence, the
figure displays the minimum separation between events so that they are ordered, when
clocks are worst-case separated by 7. An informal proof is given in appendix.

At this point, the temporal order problem is formulated, and the limitations of its
solution in distributed systems, established in Remarks1 and 2. In consequence, the
programmer can obtain simple orderings of events by means of timestamps, for example
in instrumentation, and extract conclusions about their order of occurrence in physical
time, depending on their minimum separation, as will be discussed in section 6.

However, another very important use of temporal order in distributed control, as we
pointed out in section 2, is to determine potential causal relationships among a particular
type of events: messages exchanged by the participants in a distributed computation.
Given the precision achievable by clock synchronisation in real-time systems, which are
normally LAN-based (order of milliseconds, can reach order of microseconds), one will be
ordering too much in most of the settings, vis-a-vis the objective of representing potential
causality. Inadistributed computer system or in a physical process, it takes a finite amount
of time for an input event to cause an output event: the time for a piece of information to
travel from one site to the other; the response time of a computer process; the feedback
time of a control loop in a physical process. Supposing ¢; is a lower bound for such
intervals in a given system, only two messages separated by more than é; may be causally
related in that system.
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Figure 3: Limit situation for Remark 2

In consequence, it is of no utility to order messages with a shorter separation, to
represent potential causality. A less stringent ordering on messages is benefitial for system
performance and concurrency. To understand why in a brief explanation, consider firstly
that ordering protocols incur a cost, in message complexity and/or delay, to achieve
ordering. The finer the ordering granularity, the greater that cost. Secondly, for the
control program, it is different to receive ten unrelated (concurrent) messages, which can
then be processed by independent threads, or to receive the same ten in some order, which
requires them to be processed one at a time.

4.3 The é;-precedence order

We recall a definition that will help us show how to take advantage of these facts in real
settings [22,26]:

6;-precedence order (i): An event a is said to 6,-precede an event b, agb, if
ty — t, > 6.

Since ¢; is the minimum real time interval for causal relations to be generated, ;-
precedence is the criterium for potential causality (which will not exist for smaller differ-
ences). The definition is helpful on the system support and on the application require-
ments side, as we explain below.

On the system support side, the é;-precedence concept is a suitable definition of how
tine-grained is the temporal order provided by a protocol. Let us call discrimination to the
minimum real time interval between the sending of two messages so that a protocol is
capable of correctly ordering them, by their order of occurrence in physical time. Clock-
driven protocols, such as the one in [4], are known to achieve total temporal order using
a global timebase. However, since the clocks are digital, and thus granular, they have a
limitation, sometimes overlooked, which derives from Remark 1:
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Remark 3 The discrimination of clock-driven protocols cannot be better than = + g,,.

If Rule 1 is followed, we may also conclude:

Remark 4 Clock-driven protocols of granularity g, > = enforce 2g,-precedence, 2

On the application side, é;-precedence is a suitable definition of ordering require-
ments. In a message-passing model of computation, such as the one depicted in figure1,
distributed real-time programs receive input messages, perform execution steps within
bounded delays (deadlines), and exchange messages in result of those computations. In
consequence, one can define the minimum time interval it takes for a process to issue a
reaction to an input. Generalising for a system:

Execution granularity: Execution granularity of a system, z,, is the minimum
time for an input to cause a response, in any process of the system.

Let us consider a set of events é;-precedent, if for any non-ordered pair of events,

either they are concurrent, or they satisfy the relation %, For the purpose of ordering
messages produced by z,-granular real-time programs, one can consider they form an
z,-precedent set*: for any message to cause another, it has to undergo a processing step,
so that the interval between those messages is greater z,.

The execution granularity of computer processes is normally much coarser than clock
granularity. In consequence, one can use a new virtual clock whose granularity may be
relaxed, improving the concurrency of the system, and that leads us to a major result of
this paper, Rule 2 below:

Rule 2 Given any two potentially causally related events a and b deriving from program compu-
tations in a system® with execution granularity x,, timestamped by a global clock of granularity ¢',,
and precision =, their temporal order is guaranteed to be asserted from the respective timestamps

ifg', < z,—m.

Figure 4 illustrates the situation secured by implementation Rule 2: the clocks C'1 and
C2 at two sites are separated by 7; a occurs immediately after ¢tick 1 in C'1; the causality
path (through the communication system or through the environment) is, by definition of
granularity, z,. Granularity implies that the earliest event that may be causally related to
a must occur at ¢, or later. Now notice that all events occurring at or after ¢, are ordered
with regard to a: virtual clock granularity is chosen in order that z, = ¢’, + 7, so event b
is indeed timestamped with the tick after the one of a. It is easy to see that the rule holds
for events in the same site. An informal proof of this rule is given in appendix.

As mentioned before a propos Remark2, this result is more precise than the one
presented in [14] and [9]. Bringing application requirements and system support char-
acteristics together around the unifying é,-precedence concept, yields the important new
result formulated by Rule 2. The latter comment is made more evident by the following
remark applying to message ordering protocols:

“For the sake of modeling, and without loss of generality, we consider the minimum communication
delay as zero, and we consider a finite message set-up time after z, elapses. We also consider a system-wide
x4, to make our explanation simple. In real settings, one may have several groups of non-causally related
entities, each one with a different z,.

°For example, message sends and r ecei ves.
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Figure 4: Limit situation for Rule 2

Remark 5 The discrimination of temporal order protocols need not be better than execution
granularity, z,,.

Temporal order protocols have been disputed on the grounds of ordering too much
and thus reducing system concurrency, since only messages with the same timestamp are
considered concurrent. Informally, one might say that they do not represent causality
faithfully. That would be true of conventional protocols, using clock granularities that
are either the physical ones, or of the order of precision. However, by taking execution
granularity into account, the z,-based implementation of precedence has the following
advantages:

e it is a more faithful representation of causality than approaches with granularity g,
(physical) or = (precision);

e it is free from anomalous behaviour, unlike logical order implementations [15,1,2].

In conclusion, a system implemented according to Rule 2 yields correct orders and
improves concurrency of the system, because it does not order unnecessarily, with regard
to the application requirements.

4.4 Non-sparse timebases

In [9], the concept of é;-precedence is applied to time-triggered systems. In these systems,
activity occurs in synchrony with global ticks. For events under the control of the system,
it may be possible to make them happen between global ticks, so that ordering becomes
trivial in such a sparse timebase. The cited paper details that situation.

When timing of events is not that well controlled, a denser timebase results. But it is
still tractable, if the results of the previous sections are followed, as we show below.

A dense timebase occurs as a typical situation of sensor perception when the real-
time entities [14] to be measured are not controllable by the computer system. However,
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physical processes have a process (or environment) granularity as well. This allows us to
extend the results of [9] to a non-sparse timebase which is not infinitely dense, if it has the
mapping to granularity developed in the previous section. The lattice is still tractable in

terms of ordering: if the lattice has a period of ¢;, a =y temporal order is secured.

In consequence, the results of the previous sections allow us to define how large the
lattice can be: considering z, as the granularity of the process being handled by the lattice,
we can enlarge the period of the lattice up to ¢; = z, — 7.

Remark 6 A lattice with a period of g; = x, — , secures an =3 temporal order.

The larger g¢;, the less significant the skew of the global tick (7) becomes, in the overall
period. That is, the percentage of events that occur between global ticks — and thus
receives the same timestamp — increases. This brings the lattice nearer to the ideal sparse
timebase situation mentioned above.

4.5 Total order

If to temporal order we add the fact that actively replicated processing requires total
order by default, the general ordering requirement for dependable and distributed real-
time computing would be total temporal order. Kopetz et al. do an analysis of the timing
implications of achieving total temporal order in several types of systems[12]. There
are a number of existing real-time total temporal order protocols [4,10,6]. However, total
temporal order can be expensive, both in performance and concurrency. Messages are
either restrained to fit in the nodes of a lattice, and thus they can be delayed for a whole
period, or have delivery delays of the order of the worst case transmission time. Despite
that, it is often required in time-critical applications, and namely in the periphery of the
system, in what concerns arriving events and some time-triggered actuations.

However, part of the computation in some distributed applications, consists of ex-
changing messages between replicated components inside the system. In some cases, it
may even entail producing outputs to a set of replicas of a component (a server, a display)
that need not be tightly synchronised. Furthermore, at that level there is frequently no
causal relationship between the computation modules producing the messages, or if there
is, it is confined to those interchanged messages (no hidden channels thus). The commu-
nication requirements of these special cases are confined to: (i) real-time (bounded delay)
message delivery; (ii) total order; no precedence order or, if needed, just a logical order. A
clock-less real-time protocol providing total logical order and bounded termination delay
will prove effective in these cases, exhibiting faster termination in the no-fault cases [26].

Programmers should be aware of the simplifications that can sometimes be made
on the ordering needs of applications. Relaxing the order requirements will be further
discussed in section 6.

5 Time as seen by applications

We will now discuss how real-time programs can or should access time in a distributed
system: timers, clock synchronisation, global time, and replicated reading.
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Concerning timers, most systems have support for a start and ki | | service. Ad-
ditionally, they should provide applications with the possibility of linking the execution
of a function to the occurrence of timeout. This is the most precise way of taking an
action upon a timeout. Finally, the correctness of some real-time programs depends on
the ability of pausing timers. This is frequent in adaptive real-time protocols and requires
the additional suspend and r esun®e services.

Before talking about clock services, we will discuss clock synchronisation. There are
a number of protocols for clock synchronisation, displaying several attributes. Writers of
real-time programs must be concerned about the quality of the time service provided by
the system. In principle, all clock synchronisation algorithms have the property of never
setting back any clock, and of spreading whatever adjustment needed during the next
period [20]. Some algorithms are probabilistic or statistic [5,3], with possible implications
in the correctness of hard real-time programs. Most existing algorithms perform internal
synchronisation, guaranteeing a precision bound. However, a real-time system is one
that interacts with the environment. The real world uses standard references of absolute
time and whenever the system operation must take them into account, the system must
guarantee that its timebase is also externally synchronised [13]. This is called accuracy.
One purpose of keeping clocks accurate is to be able to relate (and order) events in two
separate real-time systems which are accurate to the same external time reference. As a
matter of fact, clocks that are accurate are also precise, since the relative precision of clocks
with a accuracy is 7 = 2 a.

Discussing now the global time services, the basic one available to programs is obvi-
ously get _t i me. However, the correctness of real-time programs can be influenced by the
way that is implemented. For best results with regard to freshness, time should in fact be
acquired by reading shared memory. Dedicated systems achieve the best results by reading
time and timestamping buffers and messages via hardware coprocessors [13]. Finally,
real-time programs, especially control ones, must have the ability to efficiently schedule
the execution of functions at a given future time, such as exec_at (hour, functi on).

Finally, replica agreement on time, in fault-tolerant real-time systems. Several ap-
proaches may be taken on this, depending on the replication model and semantics. A
detailed discussion is given in [14]. Actively replicated programs can perform local
get _t i me readings and run a consensus protocol, to reach a single value. In semi-active
or passive replication, the primary or leader can impose its local value on the other repli-
cas. With some system support for distributed replication, such as the one described
in [19], program replicas can access time transparently from replication, though not trans-
parently from clock access. This means that clock access by replicas is not made through
the default system primitive, but through a local time server which offers the same interface
as the system’s get _t i me. All the processing concerning replica agreement is performed
underneath and thus transparently.

One of the main uses of time by programs is timestamping for ordering. This is
a delicate issue in distributed systems, since the programmer must always be aware
of the limitations of timestamp-derived orders. In section 6 below, we will discuss the
implications of clock precision in the order of events and messages.
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6 Order as seen by applications

In this section we discuss how real-time programs can or should obtain order in a dis-
tributed system: logging order of events; ordered dissemination of messages and/or
actions.

Logging the time at which events occur is easily done by timestamping as described
in section5. However, the a posteriori analysis deserves some precautions by the pro-
grammer, deriving from the Remarks made in the previous sections. The same is true of
the relative order of message interrupts® disseminated in temporal order.

The order of the messages processes exchange when communicating with one another
is also relevant. In a time-triggered system [11] message dissemination takes place in
the nodes of the timebase lattice, hopefully sparse. In an event-triggered system [25],
messages occur without any instantaneous constraint. By instantaneous, we mean that a
single observed message can indeed take place at any time. However, if truly real-time
behaviour is to be observed, then a limit on the message sending pattern must be observed
by definition and design of the system, to avoid the well-known event showers. Such a
pattern is called sporadic. One way of imposing a discipline for the dissemination of
a sporadic arrival pattern is to select sending points over the nodes of a time-triggered
lattice, albeit in an irregular fashion. The subject is further discussed in [14].

The time-triggered sparse timebase with large granularity is also very useful for real-
time output: while temporal order is secured, tightness (i.e., simultaneity) of action is
improved, since the system acts at synchronised points with small skew.

Temporal order in an event-triggered system is normally achieved with clock-driven
protocols, for example with a -protocol [4]. -protocols derive their name from the fact
that messages, timestamped 7, when they are sent to the network, are delivered to all
destinations at T 4+ . The delay is a constant of the system, and is made greater than the
sum of the maximum transmission time and the precision of the clocks.

In time-triggered systems, temporal order is trivially obtained by having all sites send
their messages at the nodes of the lattice. Messages sent at a given time are all concurrent,
and precede the messages to be sent at the next node [9], and so forth.

The programmer should be aware of what the order protocols can provide to him, to
avoid any surprises. In the next sections we discuss what the programmer can conclude
from a timestamp-derived ordering, how to relax order, and how to benefit from sparse
timebases.

6.1 Telling order from timestamps

Next, we are going to analyse what can the programmer conclude from a distributed-
timestamp derived order, on several occasions. Two views can be taken on this: (i)
what order discrimination can a given system guarantee, depending on the separation of
events or messages; (ii) what is the meaning of the run-time ordering of any two events
or messages, based on the respective timestamps.

The tables in figures 5 and 6 describe the two decision processes. The reader will note

®An event collected in the periphery of an event-triggered system which is converted into a message
with temporal information about it and delivered to the centre of the system[14].
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Event separation (6;) Ordering guarantee
oy >m+g ALWAYS IN CORRECT ORDER
approx. (é: > 2g)
T<&<mT+g EITHER SIMULTANEOUS OR
approx. (g < é; < 2g) IN CORRECT ORDER
o< ANY ORDERING POSSIBLE
approx. (é: < g) | TIMESTAMP DIFFERENCE | < 1
6, =0 ANY ORDERING POSSIBLE
(or same event!) | TIMESTAMP DIFFERENCE | < 1

Figure 5: A priori ordering of events (or messages) separated by varying intervals, with
distributed timestamps

Relation between timestamps (¢s;) | Possible event separation
(7' =1t —t1)

Tsy =Ts1 0< |6l < g+ NEVER
approx. 0 < |§%] < 2¢ 2g-PRECEDENT
Tsy=Ts1+1 —7r<6$1<7r+2g
Tsy=Tsi + 2 g—n1< 6l <71+3g ALWAYS IN
Tsy=Ts; +3 29T <& <Tm+4g PHYSICAL ORDER
Tsy=Ts1+4 3g— 1< 631 < m+ bg AIWAYS

2g-PRECEDENT

Figure 6: Run-time ordering of events or messages, based on distributed timestamps

the importance of both of them: the first is concerned with the fundamental limits on
order discrimination, it tells the programmer how two given events may be ordered by
the system, depending on their separation; the second is concerned with what the system
allows the programmer to know about the way it orders events, with regard to their
physical order. This means that although the programmer has guarantees about ordering
of events, he/she may not be able to tell their physical order precisely from timestamps,
in run-time.

The meaning of correct order in the tables is: events have different timestamps, in the
order of their physical occurrence. The meaning of simultaneous is: events have the same
timestamps. The approximate expressions in parenthesis account for the limit situation
where ¢ = 7. Precision is denoted by 7, and the granularity assumed for the clocks,
whatever its value, by g. For simplicity, the legends and the text below refer to events
only, although all applies to timestamped messages as well.
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Some conclusions may be drawn from the figures. If precision is of the order of
magnitude of granularity (¢ ~ 7), one can make some easy-to-remember simplifying
assumptions:

e ANY TWO EVENTS SEPARATED BY AT LEAST 2¢g ARE CORRECTLY ORDERED;

e ANY TWO EVENTS SEPARATED BY AT LEAST g BUT LESS THAN 2¢g ARE NEVER INVERSELY
ORDERED, BUT THEY MAY RECEIVE THE SAME TIMESTAMP,

o TWO EVENTS SEPARATED BY LESS THAN ¢ MAY RECEIVE THE SAME TIMESTAMP OR BE
ARBITRARILY ORDERED BY CONSECUTIVE TIMESTAMPS.

e THE SAME EVENT OBSERVED AT TWO SITES MAY RECEIVE THE SAME TIMESTAMP OR BE
ARBITRARILY ORDERED BY CONSECUTIVE TIMESTAMPS.

Conversely, when events can have any possible separation, there are fundamental
limits to order discrimination by a program, which one — simplifying again — can draw
from the table in figure 6:

e EVENTS WITH THE SAME TIMESTAMP ARE GUARANTEED TO BE CONCURRENT (NOT 2¢-
PRECEDENT);

e ONLY EVENTS WITH TIMESTAMPS SEPARATED BY AT LEAST 2 ARE GUARANTEED TO BE IN
THEIR PHYSICAL ORDER.

e ONLY EVENTS WITH TIMESTAMPS SEPARATED BY AT LEAST 4 ARE GUARANTEED TO BE
2¢-PRECEDENT.

Events with timestamps separated by one may be anything, from 2g-precedent to
ordered inversely to their physical order, but never inverting the 2g-precedence order’. In
consequence, timestamp ordering has a limitation similar to that of the logical clocks of
Lamport [15]: é;-precedent events receive different timestamps in correct order, but the
inverse implication is not true, concurrent events may be ordered by timestamps.

Logical clocks are sequence counters maintained by each site, used to order messages.
Vector clocks [16] consist of vectors of logical clocks. Protocols using vector clocks [2]
include the local vector in each message sent, and messages are delivered in an order
resulting from the comparison of the local vector with the one in the received message.
Vector clocks establish the equivalence relation for logical order as defined in section 4,
that is, they order exactly the messages potentially causally related, and not more. But this
only works for non-real-time systems, and plus, in systems without hidden channels, as
pointed out in that section.

There is no solution for this problem with temporal order without constraining the
system activity. This is not incorrect, since by definition of partial order, concurrent
events may be ordered in any manner. However, it limits concurrency of the system. The
results of the previous sections allow relaxing temporal order as much as possible without
more knowledge about applications than its granularity. The next section discusses other
possibilities of further relaxing order.

"That is, if ordered contrary to physical order of occurrence, it is because their difference is not greater
than 2g.
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6.2 Relaxing order

There are several opportunities for the programmer to relax the ordering needs for the
messages exchanged in the system, and they should be taken whenever appropriate.
Below, we give some examples of situations when the programmer can make tradeoffs
between the several ordering disciplines available from the system support:

e specific knowledge about the application semantics;
e particular computational model;

e particular replication model;

e several ordering paths to the same destination.

Application semantics can be used by the programmer in the choice of the protocol.
For example, knowledge that the senders are a priori concurrent, allows using a FIFO
order protocol instead of a causal one, if the underlying system provides several qualities
of communication service [26].

The computational model may be restrictive enough to make a causal protocol unuse-
tul. If the system is single-threaded, only evolving through blocking RPCs, for example
those coming from the supervisor in figure 1a, the ordering is established by the trajectory
of the thread of control, and is purely sequential, no concurrency exists. Multi-threads,
even if used with RPC, create opportunities for trading-off concurrency with order.

In real-time fault-tolerant systems, active replication is normally used. For the replicas
to be deterministic, i.e. produce the same outputs, they should receive the same inputs
in the same order [19]. This would require a total order protocol, as described earlier.
However, in some replication models, a privileged replica exists (the primary, coordinator
or leader). One of these models, the leader/follower [25], is particularly well-suited for
dynamic real-time applications. The leader imposes its own processing order on the other
replicas through a private replication management protocol, obviating the need to secure a
total order in communication among processes. Thatis, when sending competing requests
to a replicated leader/follower controller, there is no need for ordered communication.

The last point is one of the most important issues for protocol builders. There may be
several unrelated ordered flows of messages into the same recipient, for example, urgent
alarm messages, themselves ordered, but which can overtake others freely, breaking an
otherwise global order into incomplete orderings, that is, orderings on subsets of the
messages received. In logical order protocols, one may restrict the ordering discipline
by using groups, or special labels in the send request, so that only messages for the same
group, or with the same label, are mutually ordered [1]. Temporal order protocols will
tend to reason in terms of ordering all messages by timestamps. However, every system
has concurrent activities which have no ordering relationship. Messages concerning these
different activities may reach the same set of participants. Since the fact that they are not
related is not known to an underlying temporal order protocol, it will order all of them.
Although the thorough discussion of a protocol would be outside the scope of this paper,
we suggest a very simple protocol whereby outgoing messages belonging to different
activities (temporal order flows) are labeled differently (one label per activity). Thus,
the protocol might maintain several queues, one per label, and in each queue follow the
ordering discipline, independently from the other messages.
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Relation between timestamps (7's;) | Possible event separation
(5%1 =1y — 1)
Tsy =Ts1 0< 6 <g—n NEVER
g-PRECEDENT
Tsy=Ts1+1 T<6l<29—n
ATIWAYS
Tsy=Ts1 +2 T4+g< ! <3g—n §-PRECEDENT

Figure 7: Run-time ordering of events or messages, based on distributed timestamps from
sparse timebases

6.3 Improving order precision with sparse timebases

Another track is the one followed by pure time-triggered systems[11]. They constrain
occurrence of events and messages to specific instants in a timebase lattice synchronised
with the clock. This leads to a sparse timebase as discussed earlier. Using the results in [9],
we derive a new content for the table in figure 6, which we present in figure 7. Citing [9]:
suppose events and actions only occur between the last local clock tick of node : of the
lattice, and the first tick of node : + 1. Then, all events in a same cycle of the lattice receive
the same timestamp, and are concurrent. Likewise, any two events of consecutive cycles
are separated by one tick. The consequences are depicted in figure 7.

As already pointed out by Kopetz [9], this programming style drastically simplifies
the temporal relationships in a distributed real-time system. However, it is not always
possible for the computer system to control the environment, in order to condition per-
ception and actuation times. In those occasions, the system must take that event-triggered
nature into account, and the programmer, event if using a time-triggered lattice, as dis-
cussed under non-sparse timebases in section4, must rely on the contents of the table
in figure 6. We anticipate that distributed real-time systems will tend to have a hybrid
time- and event-triggered behaviour, to cope exactly with the varying requirements just
enumerated. In that case, we hope the programmer will find the unifying perspective
given in this paper useful, for its generality.

7 Conclusions

Writers of programs for dependable distributed real-time systems have to deal with pro-
gramming abstractions which, for the purpose of tractability, hide the complex timing and
ordering relationships between events and messages. The limits of these abstractions are
sometimes ignored by the programmers. On the other hand, when considered without
taking into account the requirements of the environment (physical or computational), they
sometimes lead to too demanding, and thus inefficient, solutions.

The paper has equated the fundamental limits of time and order in distributed systems
in a unified manner. It has extended previous results in this domain, giving precise
formulations of the limits to temporal order in distributed systems with granular and
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imprecise clocks. Programs built with these limits in mind, will work correctly from the
time and order viewpoints, be the abstractions they use time- or event-triggered.

These limits however, tend to compromise efficiency and concurrency of systems.
With the help of innovative concepts such as 6;-precedence and execution granularity, the
paper has shown that the limits can be drastically relaxed, if the system support (clock
granularity, order discrimination) can be matched to the ordering and timeliness require-
ments of programs. In consequence, system protocols will order events and messages
more faithfully, though correctly. Until now, there has been a tendency to consider that
the more fine-grained a temporal order or the closer the precision of a clock set, the bet-
ter. The paper has shown that this is not so. Surprisingly, time-critical systems can be
reliably controlled by coarse temporal order protocols and clocks with “lousy” precision,
provided they still respect the limits imposed by the requirements of the processes they
are controlling (cf. Rule 2 and Remark 5).

Finally, the paper discussed how applications can access time and order. Namely, it
discussed what can a program deduct, from timestamps on events or messages, about
their temporal order — and in consequence, causality — relations. By program, we mean
a control application, or a system support protocol: we hope these results are as useful
to real-time application programmers, as to system programmers, for example the ones
building the system support for lock-step time-triggered systems, or for event-triggered
acquisition and control systems. In appendix, we give a consolidated list of the Rules
and Remarks made along this paper, together with an informal proof of the most relevant
results.
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List of Rules and Remarks

Rule 1: To ensure distributed timestamps of the same event are at most one tick apart,
the granularity g, of the global timebase must not be smaller than precision 7: ¢, > 7.

Rule2: Given any two potentially causally related events a and b deriving from
program computations in a system® with execution granularity z,, timestamped by a
global clock of granularity ¢’, and precision 7, their temporal order is guaranteed to be
asserted from the respective timestamps if ¢’, < z, — 7.

Remark 1: Given two events a and b in different sites, timestamped by a global clock
of granularity g¢,, precision 7, their temporal order can be guaranteed to be derived from
the respective timestamps’ only if |t, — t,| > 7 + g,.

8For example, message sends and r ecei ves.
If [ty — t4| < m, there may even be order inversion.
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Remark 2: Given two events a and b in different sites, timestamped by a global clock of
precision 7, and granularity g, > 7, their temporal order can be guaranteed to be asserted
from the respective timestamps only if |t, — t,| > 7 + ¢,.

Remark 3: The discrimination of clock-driven protocols cannot be better than 7 + g,

Remark 4: Clock-driven protocols of granularity g, > = enforce 2¢,-precedence, 2.

Remark 5: The discrimination of temporal order protocols need not be better than
execution granularity, z,.

Remark 6: A lattice with a period of ¢; = z, — 7, secures an o temporal order.

Informal proof of some results

Rule 1: The proof is obvious, if we think that, if clocks differ by = < g¢,, the same tick
interval in all clocks has at least an overlap of a single point in time (when = = g¢,). Thatis
all that is necessary to avoid that any timestamp of the same event is more than one tick
apart. O

Rule 2: According to Remark 2, for order to be recognised, events must be separated
by at least = + ¢g,. Substituting ¢’, = z, — = for ¢g,, we have a new order condition:
|ty — t,| > z,. Since z, is the execution granularity, no two events separated by less than
it, in the same or different sites, are causally related, so the order can indeed be correctly
relaxed and still reflect all interesting relations. O

Remark 1: a formal proof for continuous clocks was given by Lamport. For granular
clocks, imagine first the clocks are in phase: for two events to have different timestamps,
it is enough that they be g, apart. Now imagine that one of the clocks starts drifting from
the other, until reaching a difference of 7: to keep the timestamp difference, the separation
between events must also increase by 7, to 7 4 ¢,. O

Remark 2: Derives from the proof of Remark1 and the transformation of ¢, in g,.
Refer to figure 3 to illustrate the limit situation. O

Remark 3: The proof is obvious, given g, and 7, the granularity and precision of the
clocks serving the -protocol, and Remark1. O

Remark 4: The tightest value that satisfies g, > 7 is g, = 7. Thence, the ordering
condition in Remark 2 becomes 7 + ¢, = 2¢,. O

Remark 5: Follows from Rule 2.

Remark 6: Follows from Remark 2 and Rule 2. Note thatif g; = =, — 7, then g;+7 = z,,
which according to Rule 2, is enough to guarantee order. O
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