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Why do we care about the “Time” in a 
distributed system?

 May need to know the time of day at 
which some event happens on a specific 
computer

external clock synchronization

 For two events that happened on 
different computers

May need to know the relative order
May need to know time interval 
 internal clock synchronization



 

Physical Clocks

 Every computer contains a physical clock

 A clock is an electronic device that counts oscillations in a crystal 
at a particular frequency

 Count is typically divided and stored in a computer register

 Clock can be programmed to generate interrupts at regular 
intervals.

 This value can be used to timestamp an event on that computer

 Two events will have different timestamps only if clock resolution is 
sufficiently small

 Many applications are interested only in the order of events, not 
the exact time of day at which they occurred.



 

Physical Clocks in Distributed Systems

 Does this work?
 Synchronize all the clocks to some known high degree of 

accuracy, and then
 Measure time relative to each local clock to determine order 

between two events

 Well, there are some problems…
 It’s difficult to synchronize the clocks
 Crystal-based clocks tend to drift over time-count time at 

different rates, and diverge from each other
 Physical variations in the crystals, temperature variations, etc.
 Drift is small, but adds up over time
 For quartz crystal time, typical drift rate is about one second every 

106 seconds=11.6days
 Best atomic clocks have drift rate of one second in 1013 seconds = 

300,000 years



 

Logical Clocks

 Idea — abandon idea of physical time

 For many purposes, it is sufficient to know 
the order in which events occurred 

 Lamport (1978) — introduce logical 

   (virtual) time, to provide consistent event 
ordering
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THE PAPER

 Handles the problem of clock drift in 
distributed systems

 Identify main function of computer 
clocks

 How to order events
 Indicates which conditions clocks must 

satisfy to fulfill their role

 Introduces logical clocks



 

ORDERING EVENTS

 Event ordering linked with concept of 
causality:
 Saying that  event a  happened before 

event b is same as saying that  event a  
could have affected the outcome of 
event b

 If events a and b happen on processes 
that do not exchange any data, their 
exact ordering is not important



 

Relation “has happened before” (I)

 Smallest relation satisfying the three 
conditions:
 If a and b are events in the same process 

and a comes before b, then a  b
 If a is the sending of a message by a 

process and b its receipt by another 
process then 
a  b

 If a  b and b  c then a  c.



 

Example (I)
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Example (II)

 From first condition
 a  d
 c  e

 From second condition
 a  c
 b e

 From third condition
 a  e



 

Relation “has happened before” (II)

 We cannot always order events: 
relation “has happened before” is 
only a partial order

 If a did not happen before b, it 
cannot causally affect b. 



 

Logical clocks

 Verify the clock condition:
 if a  b then C<a> < C<b>

and the two sub-conditions:
 if a and b are events in process Pi and a 

comes before b, then Ci<a> < Ci<b>,
 if a is the sending of a message by Pi 

and b its receipt by Pj then 
Ci<a> < Cj<b>,



 

Implementation rules

 Each process Pi increments its clock 
Ci between two consecutive events,

 If a is the sending of a message m by 
Pi then m includes a timestamp Tm = 
Ci<a>
when Pj receives m, it sets its clock to 
a value greater than or equal to its 
present value and greater than Tm.



 

Defining a total order

 We can  define a total ordering on 
the set of all system events

a  b if either Ci<a> < Cj<b> 
or

 Ci<a> = Cj<b> and Pi < Pj.

 This ordering is not unique



 

Anomalous behaviors

 Logical clocks have anomalous 
behaviors in the presence of outside 
interactions
 carrying a diskette from one machine 

to another

 dictating file changes over the phone

 Must use physical clocks



 

Example 

Process i

Process k

Process j
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Strong clock condition
 Let S  be set of all systems events 

plus the relevant external events

  For any events a, b in S,
if a  b then C<a> < C<b>



 

Physical clock conditions

 There is a constant k << 1 such that for 
all i:

|d Ci(t)/dt - 1| < k

The clock is neither too fast nor too slow

 There is a constant  such that for all i, 
j:

 |Ci(t) - Cj(t)| < 
The clocks are more or less synchronized



 

Observations

 Like logical clocks, physical clocks 
cannot be rolled back

 Required accuracy of a physical clock 
depends on the minimum 
transmission delay of outside 
interactions
 If it takes 20 minutes to carry a diskette 

between two machines their clocks can 
be off by up to 20 minutes



 

Example 

Process i

Process j

XX

XX

XX
11:30 am d

OK

11:15 am
XX

11:30 am

NO

20 minutes
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Why do clock synchronization?

 Time-based computations on multiple machines
 Applications that measure elapsed time
 Agreeing on deadlines
 Real time processes may need accurate timestamps

 Many applications require that clocks advance at 
similar rates
 Real time scheduling events based on processor clock
 Setting timeouts and measuring latencies
 Ability to infer potential causality from timestamps



 

Famous example

 Scud rockets launched by Iraq 
towards Israel

 Ground-based Patriot missiles fire 
back

 But missiles always missed the 
warhead!

 Why?



 

Famous example

 Scud rockets launched by Iraq towards 
Israel

 Ground-based Patriot missiles fire back
 But missiles always missed the warhead!
 Why?

 After 72 hours of waiting control system was 
out of sync relative to Patriot guidance 
system

 “be at (x,y,z) at time t” was misinterpreted!



 

Synchronization with failures

 A process is faulty if its behavior deviates from that 
prescribed by the algorithm it is running. 

 

1. Crash: The process stops and does nothing from that point. 

2. Send omission: The process crashes or omits to send 
messages that it is supposed to send. 

3. Receive omission: The process crashes or does not receive 
messages sent to it. 

4. General omission: The faulty process is subject to send 
omissions, receive omissions, or both. 

5. Arbitrary (sometimes called Byzantine): The faulty process 
can exhibit any behavior, including malicious actions that 
will cause the system to fail. 



 

The System Model

 Hardware clocks
 Physical clock of process q designated Rq(t)
 Clocks have a drift rate ρ:

 (1+ ρ)-1(t2-t1)  Rp(t2)- Rp(t1)  (1+ ρ) (t2-t1) 
 Implies that rate of drift is bounded by dr = ρ(2+ ρ)/(1+ ρ)
 For time t, general bounds:

• (1- ρ)t   (1+ ρ)-1 t   R(t)   (1+ ρ)t   (1- ρ)-1t

 There is a limit tdel on message latency



 

Clock synchronization goals

 A clock synchronization protocol implements 
a virtual clock function mapping real time t 
to Cp(t)

 Agreement condition:
 |Cp(t) - Cq(t)|  Dmax  for all correct p, q
 Dmax bounds the difference between two virtual 

clocks running on different processors
 Accuracy condition: 

 (1+)-1t + a  Cp(t)  (1+)t +b, for constants a, b, 


 Says that p’s clock must be within a linear 
envelope of “real time”



 

Clocks and True Time
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Authenticated Algorithm

//(not a sequential program)
   if received f+1 signed messages (round k) (“accept”)
   Ck(t):=kP+a;
      relay all f+1 signed messages to all f
coend

   

cobegin
   if Ck-1(t) = kP
     sign and broadcast (round k) f

Solution for system of n processes, at most f of 
which are  faulty



 

Observations
Why relay?

Faulty processes do not necessarily broadcast.

Why N > 2f?      

         faulty processes                 correct processes

N = 4, f = 2, suppose faulty processes get stuck and p, q want to resynchronize

p

q

p, q cannot resynchronize !



 

Achieving Optimal Accuracy

 Bound on accuracy:

   for any synchronization, even in the 
absence of faults, accuracy cannot 
exceed that of the underlying 
hardware clocks

 Why algorithm 1 is not optimal?
 Uncertainty of tdel introduces a 

difference in the logical time between 
resyn.



 

Optimality (informal description)

 Solution: compensate for the uncertainty of tdel:
If a process accepts a (round k) message early, it delays 
the starting of the kth clock by tdel/2(1+ ρ). 

If it accepts the message late, it advances the starting of 
kth clock by tdel/2(1+ ρ).

  Suppose process i accepts (round k) message at 
time t, and let T=Ck-1(t), ß = tdel/2(1+ ρ)

  early: T <= kP + ß
  late: T > kP+ ß

Proof of correctness: remarkably tricky, ignored 
here
   



 

Unauthenticated algorithm

 The authenticated algorithm relies on 
properties of the message system:

 Correctness: If at least f+1 correct processes broadcast 
round k messages by time t, then every correct process 
accepts a message by time t+tdel

 Unforgeability: If no correct process broadcasts a round 
k message by time t, then no correct process accepts 
the message by time t or earlier

 Relay: If a correct process accepts the message round k 
at time t, then every correct process does so by time 
t+tdel



 

Unauthenticated algorithm (II)

 A broadcast primitive which has the three properties
To broadcast a (round k) message, a correct process sends (init, 

round k) to all.
for each correct process:
   if received (init, round k) from at least f+ 1 distinct processes
     send (echo, round k) to all;
       received (echo, round k) from at least f+ 1 distinct processes
     send (echo, round k) to all;
   fi
   if received (echo, round k) from at least 2f+ 1 distinct processes
   accept (round k)
   fi

 Requires n > 3f+1, in order to accept



 

N > 3f +1

         faulty processes                 correct processes

N = 5, f = 2, suppose faulty processes get stuck, all three correct 
processes want to resynchronize

p

q

p, q, r never receive 2f +1 ( echo, round k), thus not accept

r



 

Simulating Authentication 

 Nonauthenticated algorithm for clock synchronization for 
process p for round k
cobegin

if Ck-1(t) = kP /* ready to start Ck */

broadcast (round k) fi /* using the broadcast primitive*/

//

if accepted the message (round k) /* according to the primitive */

 Ck(t) := kP + a fi /* start Ck */

coend

 Message overhead: O(n2)



 

Restricted Models of failure

 Now assume arbitrary failure

 For other types of failures, including 
crash, sr-omission, the algorithm can 
be easily modified to achieve the 
optimality in the number of fault 
processes.



 

Summary

 A unified solution for synchronizing clocks.

 In practice, quality of synchronization 
remains relatively poor

 At best synchronization will be limited by 
quality of physical clocks, rates of physical 
clock drift, and uncertainty in latencies
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