
Consistent Global States

Sape Mullender

Huygens Systems Research Laboratory
Universiteit Twente
Enschede

1

Introduction

Suppose we have an active distributed computation and we
want to ask questions of the sort

� Is the system deadlocked?
� How many processes are reading a particular file?
� What is the balance of the bank?

To resolve these questions, we must send messages to all
participating processes. The problem is that, while the
question is being answered, these processes continue to
exchange messages.

2

Asynchronous System

Let’s investigate what we can say about the global state of a
computation in an asynchronous system.

A collection of sequential processes, p1; p2; :::; pn, and
a network of communication channels between pairs of
processes.

Communication is reliable but incurs potentially unbounded
delays. One process may be arbitrarily faster or slower than
another.

3

Distributed Computation

A distributed computation is a single execution of a
distributed program by a collection of processes. Each
sequential process generates a sequence of events that are
either internal events, or communication events

The local history of process pi during a computation is a
(possibly infinite) sequence of events hi � e1

i ; e
2
i ; :::

A partial local history of a process is a prefix of the local
history hni � e1

i ; e
2
i ; :::; e

n
i

The global history of a computation is the set H �
Sn
i�1hi

4

State of a Computation

Imagine stopping a distributed computation by stopping all of
its processes simultaneously. The combined states of each of
the processes, plus the contents of the messages in transit
between processes will then tell us the exact global state of
the computation.

With this global state, we can reconstruct the balance of the
distributed banking system, or we can tell whether or not a
system is deadlocked.

The problem with our asynchronous system is that there is no
such thing as simultaneity.

5

Cause and Effect

Since there is no notion of simultaneity in an asynchronous
system, we need something else.

We do have a notion of cause and effect, however. If one event
ei caused another event ej to happen, then ei and ej could
never have happened simultaneously. ei happened before ej.

When we cannot not look inside a distributed computation,
but can only observe its communication, we cannot tell
whether one event causes another, but only whether it could
have caused another

6

Happened Before

We define a binary relation ! over events, such that

1. If eki ; e
l
i 2 hi and k < l, then eki ! eli

2. If ei � send�m� and ej � receive�m�, then ei ! ej
3. If e ! e0 and e0 ! e00, then e ! e00

When e ! e0, we say e causally precedes e0 or e happened
before e0.

We define concurrent as e k e0 � :�e ! e0 _ e0 ! e�

7

Distributed Computation

A distributed computation is a partially ordered set (poset)

 � �H;!�.

A distributed computation can be depicted in a space-time
diagram:

8

P
1

P
2

P
3

e
1
1 e

1
2 e

1
3 e

1
4 e

1
5 e

1
6

e
2
1

e
2
2

e
2
3

e
3
1 e

3
2e

3
3 e

3
4 e

3
5 e

3
6

req

req

req req

resp
resp

9

Global States

The local state of process pi after executing event eki is
denoted � ki . The initial local state of pi is � 0

i .

A global state is a collection of local states Ö � Sni�1�i.

10

Cuts

P
1

P
2

P
3

e
1
1 e

1
2 e

1
3 e

1
4 e

1
5 e

1
6

e
2
1

e
2
2

e
2
3

e
3
1 e

3
2e

3
3 e

3
4 e

3
5 e

3
6

1C C2

11

A cut C of a distributed computation is a collection of partial
local histories: C �

Sn
i�ih

ci
i .

The set of last events ecii (i � 1; :::; n) included in the cut is
called the frontier

12

Runs

A run of a distributed computation is a total ordering R of its
events that corresponds to an actual execution

R � e1
3e

1
1e

2
3e

1
2e

3
3e

4
3e

2
2e

2
1e

5
3e

3
1e

4
1e

5
1e

6
3e

3
2e

6
1

13

P
1

P
2

P
3

e
1
1 e

1
2 e

1
3 e

1
4 e

1
5 e

1
6

e
2
1

e
2
2

e
2
3

e
3
1 e

3
2e

3
3 e

3
4 e

3
5 e

3
6

req

req

req req

resp
resp

14

Observations

An observation is a total ordering Ú of events constructed
from within the system. A single run may have many
observations:

R � e1
3 e

1
1 e

2
3 e

1
2 e

3
3 e

4
3 e

2
2 e

2
1 e

5
3 e

3
1 e

4
1 e

5
1 e

6
3 e

3
2 e

6
1

O1 � e1
2 e

1
1 e

1
3 e

2
3 e

4
3 e

2
1 e

2
2 e

3
3 e

3
1 e

4
1 e

5
3:::

O2 � e1
1 e

1
3 e

1
2 e

2
3 e

2
1 e

3
3 e

4
3 e

3
1 e

2
2 e

5
3 e

6
3:::

O3 � e1
3 e

1
2 e

1
1 e

2
1 e

2
3 e

3
3 e

3
1 e

4
3 e

4
1 e

2
2 e

5
1:::

15

Monitoring Distributed Computations

Observing a distributed computation from within is called
monitoring.

We introduce an extra process P0, the monitor. It
‘interrogates’ the other processes by sending them messages.
From the replies received, the monitor constructs a global
state of the computation.

The thousand-dollar question is whether the state constructed
by the monitor is a state that actually occurred in the
distributed computation.

Remember, we’re monitoring an asynchronous system from
within!

16

Naive Algorithm #1 :::

� p0 sends a message to each process asking a state report.
� When pi receives such a message, it replies with its current

state �i.
� When all n processes have replied, p0 constructs the global

state (�1; �2; ::: �n).

17

::: and Why it Doesn’t Work

P
1

P
2

P
3

e
1
1 e

1
2 e

1
3 e

1
4 e

1
5 e

1
6

e
2
1

e
2
2

e
2
3

e
3
1 e

3
2e

3
3 e

3
4 e

3
5 e

3
6

P
0

18

Consistency

From within an asynchronous system, in general, there is no
way to tell whether a particular global state ever occurs.

Instead, we can define a consistent state as one that could
have occurred.

A cut C is consistent if 8e; e0 : �e 2 C�^ �e0 ! e�) e0 2 C

19

More consistency

A consistent global state is one that corresponds to a
consistent cut.

A consistent observation is a total ordering of the events in
H that is consistent with the partial order defined by causal
precedence.

A consistent observation Ú � e1; e2; ::: corresponds to a
sequence of global states Ö0; Ö1; ::: where Öi is derived fromÖi�1 by executing the single event ei.

20

Lattice of Global States

P
1

P
2

e
1
1 e

1
2 e

1
3 e

1
4 e

1
5 e

1
6

e
2
1 e

2
2 e

2
3 e

2
4 e

2
5

10

00

01

02

03

04

11

12

13

14

21

22

23

24

31

32

33

34

35

41

42

43

44

45

53

54

55

63

64

65

21

Constructing Observations

� Suppose that each process p1; p2; :::, when it executes an
event, also sends a notification (as an extra event, as it were)
to the monitor, p0.

� When the monitor receives a notification, it adds it to the
observation being constructed:

� For each event of pi, the monitor updates its local state �i.
� At any time, the global state is constructed as the n-tuple

of latest local states.

22

Why doesn’t that work?

Message delays are arbitrary, so p0 can receive an arbitrary
permutation of the messages produced by the pi.

So what can we do to construct consistent observations?

23

Reception and Delivery

When the monitor receives a notification of an event, it should
not immediately act on it. It should first check if there aren’t
any other messages still under way that should be acted on
first.

We distinguish between receiving a message and delivering
one: When the message arrives it is received. Then a delivery
rule decides when a message can be delivered (acted upon).

24

FIFO

Communication from process pi to pj is First-in-First-Out
(FIFO) if for all message m and m0:

sendi�m� ! sendi�m0�) deliverj�m� ! deliverj�m0�

FIFO is trivial to implement (sequence numbers) but FIFO alone
is not sufficient to guarantee the consistency of observations.

25

Synchronous System: Clocks

Assume that all processes have access to a global real-time
clock RC and that all message delays are bounded by �. Every
notification message m for an event e contains a timestamp
TS�m� � RC�e�

DR1: At time t, deliver all received messages with
timestamps up to t � � in increasing timestamp order.

Clock Condition: e ! e0) RC�e� < RC�e0�

The observations constructed this way are consistent because
the clock condition is satisfied. Real-time clocks satisfy the
clock condition.

26

Back to Asynchronous Systems

We invent a clock in an asynchronous system that satisfies the
clock condition.

Each process maintains a local positive-integer variable LC,
the process’ logical clock. LC�ei� is the value of pi’s logical
clock when executing event ei.

Update rules:

LC�ei� :�
(
LC � 1 if ei is an internal or send event

maxfLC; TS�m�g � 1 if ei � receive�m�

27

Logical Clock

P
1

P
2

P
3

1 2

1

1 2 3 5

4 5 6 7

6

74

5

LC�ei� :�
(
LC � 1 if ei is an internal or send event

maxfLC; TS�m�g � 1 if ei � receive�m�

28

Gap Detection

Trying to deliver messages in increasing logical-time-stamp
order presents a problem:

We cannot deliver a message with TS � t unless we are certain
that no message with TS < t can be received.

We need to be able to do gap detection:

Gap Detection: Given two events e and e0 and their clock
values LC�e� and LC�e0�, and LC�e� < LC�e0�, determine
whether an event e00 exists such that LC�e� < LC�e00� <
LC�e0�.

29

Stable Messages

A message m received by process p is stable at p if no
future messages with timestamps smaller than TS�m� can be
received by p.

DR2: Deliver all received messages that are stable at p0 in
increasing time-stamp order.

30

Stability

When communication between processes p0 and pi is FIFO,
and p0 receivesm from pi with TS�m�, p0 cannot later receive
a message m0 with TS�m0� < TS�m�

Stability of m at p0 is guaranteed when p0 has received a
message with timestamp greater than TS�m� from all other
processes.

31

Causal Order

Generalization of FIFO gives Causal Order:

sendi�m� ! sendj�m0�) deliverk�m� ! deliverk�m0�

FIFO order between all processes is not enough to guarantee
causal order

32

P
1

P
2

P
3

mm’

33

Strong Clock Condition

We know that, with a logical clock or a real-time clock, we have

Clock Condition: e ! e0) RC�e� < RC�e0�

Delivering messages in time-stamp order may be overly
restrictive, because it is possible that RC�e� < RC�e0�, but
e 6! e0. It would be nicer to have a clock that satisfies the

Strong Clock Condition: e ! e0 � RC�e� < RC�e0�

34

Causal History

The causal history of event e in a distributed computation
�H;!� is the set

��e� � fe0 2 Hje0 ! eg [feg:

P
1

P
2

P
3

e
1
1 e

1
2 e

1
3 e

1
4 e

1
5 e

1
6

e
2
1

e
2
2

e
2
3

e
3
1 e

3
2e

3
3 e

3
4 e

3
5 e

3
6

35

Causal Histories

Causal histories can be used to implement the strong clock
condition:

e ! e0 � ��e� � ��e0�
Or, if e 6� e0:

e ! e0 � e 2 ��e0�

The projection of ��e� on process p is the set �i�e� � ��e�\hi.
eki 2 �i�e�) 8j � k : eji 2 �i�e�

36

Vector Clocks

9ki : �i�e� � hkii . ki represents �i.

��e� �
Sn
i�1�i�e�, so the entire causal history of event e can

be represented by an n-dimensional vector of k1;:::;n, the vector
clock:

VC�e��i� � ka �i�e� � hki

37

Update Rules

VC�ei��i� :� VC�i�� 1 ei internal or send event

VC�ei� :�maxfVC;TS�m�g;
VC�ei��i� :� VC�i�� 1 ei receive�m�

38

Vector Clocks

P
1

P
2

P
3

(0,1,0)

(0,0,1) (1,0,2)

(1,0,0) (2,1,0)

(1,0,3) (1,0,4) (1,0,5)

(3,1,3) (4,1,3) (5,1,3) (6,1,3)

(1,2,4)

(4,3,4)

(5,1,6)

39

Operational Interpretation

VC�ei��i� � number of events pi has executed up to

and including ei.

VC�ei��j� � number of events of pj that causally precede

event ei of pj �j 6� i�

40

Properties of Vector Clocks

Less than relationship:

V < V 0 � �V 6� V 0�^ �8k;1 � k � n : V�k� � V 0�k��:

Property 1: (Strong Clock Condition)

e ! e0 � VC�e� < VC�e0�:

Property 2: (Simple Strong Clock Condition.) Given event ei
in pi and ej in pj, and i 6� j:

ei ! ej � VC�ei��i� � VC�ej��i�:

41

Properties of Vector Clocks

Events ei and ej are pairwise inconsistent if they cannot belong
to the frontier of the same consistent cut.

Property 3: (Concurrency.) Given event ei in pi and ej in pj:

ei k ej � �VC�ei��i� > VC�ej��i��^
�VC�ej��j� > VC�ei��j��:

Property 4: (Pairwise Inconsistent.) Event ei of pi is pairwise
inconsistent with event ej of pj �i 6� j�, if and only if

�VC�ei��i� < VC�ej��i��_ �VC�ej��j� < VC�ei��j��

42

Properties of Vector Clocks

Property 5: (Consistent Cut.) A cut defined by �c1; :::; cn� is
consistent if and only if:

8i; j : 1 � i � n;1 � j � n : VC�ecii ��i� � VC�e
cj
j ��i�:

Property 6: (Weak Gap Detection) Given event ei in pi and ej
in pj,

k 6� j ^ VC�ei��k� < VC�ej��k�) :�ek ! ei�^ �ek ! ej�

43

Implementing Causal Delivery

� Processes increment the local component of their vector
clocks only for events that are notified to the monitor.

� Each message m carries a timestamp TS�m� which is the
vector clock value of the event being notified by m.

� All messages received but not delivered by p0 are
maintained in a set M, initially empty.

� Process p0 maintains an array D�1:::n� of counters, initially
all zeroes, such that D�i� � TS�Mi��i�, where m is the last
message delivered from pi.

44

Implementing Causal Delivery

DR3: (Causal Delivery.) Deliver message m from pj when
both

D�j� � TS�m��j�� 1

D�k� � TS�m��k�;8k 6� j
are satisfied. When p0 deliversm, it sets D�j� to TS�m��j�.

P

P

P

m

m’

m"

0,0 1,0 1,2 3,3

(1,0)

(2,2)

(3,3)

(1,1) (1,2)

0

1

2

1,2?

45

Distributed Snapshots

When the monitor takes snapshots of the local states in
an uncoordinated manner, the resulting global state is not
guaranteed to be consistent.

We shall develop a snapshot protocol that only constructs
consistent global states.

46

Assumptions

The channels preserve FIFO order.

The state of a channel, �i;j, from pi to pj are those messages
that pi has sent to pj but pj has not yet received.

The set of channels from any process to pi is designated INi
(incoming with respect to pi). The set of channels from pi to
other processes is OUTi (outgoing with respect to pi).

Each process pi will record its local state �i and the state of
its incoming channels �j;i;8pj 2 INi.

47

Snapshots Protocol Nr. 1

Assume that all processes have access to a global real-time
clock RC, that all message delays are bounded and that
relative processing speeds are bounded.

1. Process p0 sends a message ‘take snapshot at tss’ to all
processes, where tss is far enough in the future.

2. When RC reads tss, each pi records its local state �i, sends
an empty message over all of its outgoing channels and
starts recording messages on its incoming channels. While
this is going on, pi does not execute any events.

3. When pi receives a message with timestamp � tss, pi stops
recording and sends the �j;i to p0.

48

Snapshots Protocol Nr. 2

Substitute a logical clock for the real-time clock.

49

Snapshots Protocol Nr. 3

Due to Chandy and Lamport (1985).

1. p0 sends itself a take snapshot message.
2. When pi receives the first marker (from pf , say), it records

its local state �i and forwards the marker on all its outgoing
channels. �f ;i is set to empty and pi starts recording
messages received on the other incoming channels.

3. When pi receives another marker (from ps, say), it declares
�s;i to be the set of recorded messages from ps.

50

Chandy and Lamport Demo

P

P

P

e
1
1 e

1
2 e

1
3 e

1
4 e

1
5

e
2
1 e

2
2 e

2
3

0

1

2
e

2
4e

2
*

e
1
*

The constructed global state is Ö23 with �1;2 � ; and �1;2 �
fmg.

51

Properties of Snapshots

Protocol starts in state Ö21 and terminates in Ö55 of the actual
run R � Ö00Ö01Ö11Ö21Ö31Ö32Ö42Ö43Ö44Ö54Ö55Ö65

P
1

P
2

e
1
1 e

1
2 e

1
3 e

1
4 e

1
5 e

1
6

e
2
1 e

2
2 e

2
3 e

2
4 e

2
5

10

00

01

02

03

04

11

12

13

14

21

22

23

24

31

32

33

34

35

41

42

43

44

45

53

54

55

63

64

65

52

Distributed Snapshots

In the example, the run does not pass through the constructed
global state Ö23, but Ö21 �! Ö23 �! Ö55

This result holds in general. If

Öi � global state in which the protocol is initiated

Öf � global state in which the protocol terminates

Ös � global state constructed

Then Öi �! Ös �! Öf
53

Global Properties

If a property � holds in the constructed state Ös, by the time
this state has been constructed, � may no longer hold.

However, some properties exist that remain true from the
moment they first hold. Deadlock is a fine example.
By definition, once a system is deadlocked, it remains
deadlocked.

54

Stable Predicates

Definition. Predicate � is stable in computation
 if and only
if

8Ö;Ö0 2
 : ��Ö�^ �Ö �! Ö0�) ��Ö0�
Let Öi, Ös, and Öf be as before. For stable predicate �,

��Ös�) ��Öf�
:��Ös�) :��Öi�

55

Making non-stable predicates stable

Definition.

1. Distributed computation
 satisfies Pos �, denoted
 ‘
Pos�, if and only if there exists an observation Ú of
 such
that Ú ‘ �.

2. Distributed computation
 satisfies Def �, denoted
 ‘
Def�, if and only if for all observations Ú of
 it is the
case that Ú ‘ �.

56

