
TABLE	OF	CONTENTS	(HIDE)

1.		Introduction
2.		Getting	Started	with	Arduino	UNO
3.		Get	Set,	but	Before	Go...

3.1		Electronic	Tools	and	Equipment
3.2		Etiquette

4.		LEDs
4.1		LED	Ex	1:	Blinking	LED	(with	a	Current	Limiting	Resistor)
4.2		LED	Ex	2:	Controlling	the	Brightness	of	a	Single-Color	LED	via	PWM
4.3		LED	Ex	3:	Multiple	LEDs
4.4		LED	Ex	4:	RGB	4-Lead	LED
4.5		LED	Ex	5:	Controlling	the	Color	of	RGB	4-Lead	LED

5.		LED	-	NOT	for	the	Dummies
5.1		LED	Basics
5.2		Driving	LEDs	(High-Current	Load)	using	Power	Transistor

6.		LED	Strips
6.1		Non-Addressable	(Analog)	12V	RGB	LED	Strip
6.2		Addressable	(Digital)	RGB	LED	Strip
6.3		NeoPixel
6.4		FastLED	3.1

7.		Motors
7.1		Motor	Ex	1:	DC	Motor	and	Transistor	(for	driving	larger	load)
7.2		Motor	Ex	2:	Servo	Motor

8.		Sensors,	Actuators	and	Other	Devices
8.1		Shift	Register
8.2		Piezo	Speaker
8.3		Push	Button
8.4		Potentialmeter
8.5		Photo-Resistor
8.6		Temperature	Sensor
8.7		Relay	(for	large	load)
8.8		Real-Time	Clock	(RTC)	Module
8.9		Ultrasonic	Ranging	Sensor	HC-SR04
8.10		Bluetooth	Shields
8.11		Wifi	Shield
8.12		MP3	Shield

9.		Arduino	Mega	2560
10.		More	on	Arduino

10.1		Microcontroller
10.2		Memory
10.3		Delay	and	Timer
10.4		Serial	Communication
10.5		Interrupts

11.		Arduino	Language	Reference
11.1		Data	Types
11.2		Literals
11.3		Constants
11.4		Variable	Scope	and	Qualifiers
11.5		Programming	Constructs
11.6		Built-In	Functions

12.		Debugging	Arduino	Programs
12.1		Serial.println()|print()|write()
12.2		Atmel	Studio

13.		Arduino	Projects
13.1		LED	Cube
13.2		Musical	Tree/Tubes
13.3		Clock/Timer

14.		Miscellaneous
14.1		How	to	choose	the	wires

yet	another	insignificant	programming	notes...			|			HOME

Getting	Started	with	Arduino
	

1.		Introduction

"Arduino	is	an	open-source	electronics	prototyping	platform	based	on	flexible,	easy-to-use	hardware
and	 software.	 It	 is	 intended	 for	 artists,	 designers,	 hobbyists,	 and	 anyone	 interested	 in	 creating
interactive	objects	or	environments."

The	mother	site	for	Arduino	is	http://arduino.cc.

2.		Getting	Started	with	Arduino	UNO

Step	0:	Buy	an	Arduino	Board

Arduino	Board	comes	 in	many	 flavors.	A	minimal	 "Arduino	UNO"	board	 for	 starter	 costs	 less	 than
US$5	and	can	be	purchased	thru	many	online	stores.	I	suggest	that	you	buy	an	"Arduino	Starter	Kit",
which	 comes	 with	 an	 Arduino	 UNO	 board	 and	 various	 electronics	 components	 (LEDs,	 resistors,
transistors,	motors,	breadboard,	wires,	etc.)	for	you	to	start	some	simple	experiments,	for	US$20-40.

https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#show-toc
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-1.
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-2.
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-3.
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-3.1
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-3.2
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-4.
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-4.1
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-4.2
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-4.3
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-4.4
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-4.5
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-5.
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-5.1
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-5.2
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-6.
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-6.1
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-6.2
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-6.3
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-6.4
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-7.
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-7.1
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-7.2
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-8.
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-8.1
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-8.2
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-8.3
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-8.4
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-8.5
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-8.6
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-8.7
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-8.8
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-8.9
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-8.10
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-8.11
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-8.12
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-9.
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-10.
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-10.1
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-10.2
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-10.3
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-10.4
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-10.5
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-11.
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-11.1
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-11.2
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-11.3
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-11.4
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-11.5
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-11.6
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-12.
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-12.1
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-12.2
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-13.
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-13.1
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-13.2
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-13.3
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-14.
https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-14.1
https://www.ntu.edu.sg/home/ehchua/programming/index.html
http://arduino.cc/

14.2		Connectors

An	Arduino	UNO	board	contains	the	following:

An	Atmel	(bought	over	by	Microchip	in	2016)	ATmega328P	8-bit	Microcontroller	(Complete	Datasheet	-	442	pages,	Summary	-	24	pages),
with	32KB	of	Flash	memory	for	programs,	2KB	of	SRAM	for	data,	and	1KB	of	EEPROM	for	non-volatile	data.	The	clock	speed	is	16MHz.

Power	IN:	The	power	to	Arduino	board	can	be	supplied	via:

USB	Connector	(5V):	also	double	as	serial	port	to	communicate	with	the	computer	(e.g.,	for	loading	program).

DC	Power	Jack	(7-12V	via	AC-to-DC	adapter	or	battery	pack).

Vin/GND	pins	(7-12V	with	9V	battery).

Power	by	5V	supply:	Although	the	5V	pin	is	meant	for	powering	external	components,	you	could	power	the	Arduino	via	the	5V/GND
pins.	This	 is	not	 recommended	because	you	could	get	 the	polarity	and	voltage	wrong	and	damage	your	arduino.	A	better	way	 is	 to
connect	your	5V	power	supply	to	the	USB	connector.	Get	an	old	USB	cable,	cut	the	plug	off	the	other	end,	and	connect	Red	wire	to	5V
supply	and	Black	wire	to	GND.	USB	connector	is	better	than	the	crappy	header	pins	and	you	can't	mess	up	the	polarity.

Power	OUT	(5V	and	3.3V	pins):	The	board	regulated	5V	and	3.3V	output	for	powering	external	components.

If	the	board	is	powered	via	USB,	the	total	current	available	for	"on-board"	and	"external	use	via	the	5V	power	out	pin"	is	500mA	(and
much	less	for	the	other	power	sources).

The	current	available	at	3.3V	pin	is	50mA.

On-board	Built-in	LEDs:	These	LEDs	are	useful	in	debugging.

Power-on	LED:	indicate	that	the	Arduino	board	is	receiving	power.

Load	cum	Pin-13	LED:	Flicker	during	sketch	upload.	Also	connected	to	Digital	Pin	13	for	program	testing	and	debugging.

TX	and	RX	LEDs:	 indicate	 communication	 between	 the	Arduino	 board	 and	 your	 computer.	 Flicker	 during	 sketch	 upload	 and	 serial
communication.

Reset	Button:	to	reset/restart	the	program.

14x	Digital	INPUT/OUTPUT	pins	(numbered	from	0	to	13):

Use	 function	 pinMode(0-13,	 INPUT|OUTPUT)	 to	 configure	 the	 pin	 for	 input	 or	 output;	 and	 digitalRead(0-13)	 or
digitalWrite(0-13,	HIGH|LOW)	to	read	or	write.

Each	pin	operates	at	5V	at	HIGH	and	0V	at	LOW.	 It	can	provide	or	receive	a	maximum	current	of	40mA,	but	only	20mA	continuous,
which	is	merely	sufficient	to	drive	a	single-color	LED	@	20mA	for	full	brightness	continuously.

Total	current	for	the	chipset	shall	not	exceed	200mA,	i.e.,	driving	10	single-color	LEDs	@	20mA.

Pin	13:	There	is	a	built-in	LED	connected	to	Pin	13,	under	Pin	13.	It	is	useful	for	debugging.

PWM	Output:	6	of	the	pins	(pins	3,	5,	6,	9,	10	and	11,	marked	with	~)	can	produce	PWM	(Pulse	Width	Modulated)	output	(i.e.,	square
wave)	via	 function	analogWrite(3|5|6|9|10|11,	dutyCycle)	with	duty	cycle	between	0	 (off)	 to	255	 (on).	The	PWM	square
wave	at	various	duty	cycles	(as	 illustrated	below)	can	be	used	 to	simulate	"analog"	output	 (e.g.,	 to	control	 the	brightness	of	LED	or

https://www.ntu.edu.sg/home/ehchua/programming/arduino/Arduino.html#zz-14.2
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Summary.pdf

speed	of	motor).	The	frequency	of	PWM	is	980Hz	on	pins	5	and	6;	and	490Hz	(half)	for	other	pins.

6x	Analog	 INPUT	pins	 (A0	 to	A5):	By	default,	 each	pin	 can	measure	between	0V	 to	5V	with	10-bit	 of	 resolution	 via	a	analog-to-digital
converter	 (ADC).	 The	 upper	 range	 can	 be	 changed	 using	 the	 AREF	 pin	 and	 analogReference()	 function.	 These	 analog	 pins	 are
labeled	A0	 to	 A5	 (whereas	 digital	 pins	 are	 labeled	 0	 to	 13).	We	 can	 use	pinMode(A0-A5,	INPUT)	 (optional	 but	 nice	 to	 have)	 and
analogRead(A0-A5)	to	read	the	10-bit	analog	input	[0,1023].
The	primary	purpose	of	the	analog	input	pins	A0-A5	is	to	read	analog	input.	However,	these	pins	can	also	function	exactly	like	digital	pins
0-13	 for	digital	 input/output.	We	can	use	pinMode(A0-A5,	INPUT/OUTPUT)	 to	set	 its	 I/O	mode,	and	and	digitalRead(A0-A5)	or
digitalWrite(A0-A5,	HIGH|LOW)	to	read	or	write.

1x	Programmable	Serial	Port	(USART):	Use	Digital	Pin	0	for	RX	and	Digital	Pin	1	for	TX;	or	the	USB	connection	(for	communicating	with
the	PC	such	as	loading	program).

Interrupts:	Pins	2	and	3	can	be	used	for	"external"	interrupt	and	mapped	to	INT0	and	INT1.	All	20	pins	(14x	digital	+	6x	analog)	can	be
used	for	"pin-change"	interrupt.

Brief	summary	of	digital/analog	pins	and	read/write	functions:

pinMode(0-13|A0-A5,	INPUT|OUTPUT):	Set	 the	pin	 to	INPUT	or	OUTPUT.	Digital	pins	are	numbered	from	0	to	13.	Analog	pins	are
numbered	A0	to	A5.

digitalRead(0-13|A0-A5),	digitalWrite(0-13|A0-A5,	HIGH|LOW):	applicable	to	all	digital	and	analog	pins.

analogWrite(3|5|6|9|10|11,	dutyCycle):	applicable	to	PWM	digital	pins	only,	where	dutyCycle=[0,255],	0	for	 low	and	255
for	high.

analogRead(A0-A5):	read	10-bit	input	in	the	range	of	[0,	1023]	for	0-5V	from	analog	input	pins.

Protecting	the	Arduino	Board:

1.	 Many	of	my	students	throw	the	Arduino	board	around	like	a	soft	toy,	and	short	the	connections	underneath.	You	can	buy	a	plaster	casting
or	simply	use	masking	tape	to	cover	the	base	of	the	Arduino	board.

2.	 Discount	the	power/USB	cable	to	the	Arduino	board,	when	you	are	connecting	the	circuitry.	This	also	protect	you	precious	PC!

Step	1:	Download	the	Arduino	IDE

1.	 Download	 the	 Arduino	 IDE	 from	 Arduino	 mother	 site	 @	 http://arduino.cc/en/Main/Software,	 choose	 the	 version	 that	 matches	 your
operating	platform	(e.g.,	Windows	or	Mac	OS	X)	and	download	the	zip	file	(e.g.,	arduino-1.8.x-windows.zip).

2.	 Unzip	 the	downloaded	 file	 into	a	directory	of	your	choice	 (e.g.,	 "D:\myProject").	The	Arduino	Development	Kit	will	be	unzipped	 into
"D:\myProject\arduino-1.8.x".	 I	 shall	 denote	 the	 installed	 directory	 as	 $ARDUINO_HOME	 in	 this	 article.	 Arduino	 SDK	 is
"arduino.exe".

Step	2:	Plug-in	the	Arduino	Board	to	Install	the	Driver	(Good	Luck	Needed!!!)

1.	 Plug	in	the	Arduino	board	with	the	USB	cable	to	the	computer.	You	shall	see	the	"POWER	ON"	LED	lights	up	(in	green	or	orange).

2.	 (For	Windows)	Install	 the	driver.	Run	"Control	Panel"	⇒	"Device	Manager"	(right-click	and	"run	as	administrator")	⇒	Look	for	and	right-
click	on	the	"Unknown	device"	(or	under	"Ports	(COM	&	LPT)")	⇒	"Update	Device	Driver"	⇒	Set	to	$ARDUINO_HOME\drivers	(i.e.,	the
unzipped	Arduino	directory).	Ignore	the	warning	message.	The	device	shall	be	installed	as	"Arduino	Uno	(COMxx)"	under	"Ports	(COM	&
LPT)".
If	your	board	is	not	detected	by	your	computer	(i.e.,	there	is	no	unknown	device	in	the	above	step),	try	connecting	to	another	USB	port;	try
another	Arduino	Board;	try	your	Arduino	Board	on	another	computer;	and	so	on...	But	don't	try	to	spend	days	fixing	the	Arduino	driver!!!

http://arduino.cc/en/Main/Software

3.	 (For	Mac	OS	X)	[TODO]

4.	 (For	Ubuntu)	[TODO]

Step	3:	Launch	the	Arduino	SDK	to	Write	your	First	Program

1.	 Run	"arduino.exe"	(at	$ARDUINO_HOME).

2.	 Copy	the	following	program	(called	sketch	in	Arduino)	into	the	editor	panel:

#define	BUILTIN_LED_PIN	13				//	A	Built-in	LED	connected	to	digital	Pin	13
	
/*	
	*	Setup()	runs	only	once	for	initialization	
	*/
void	setup()	{
			pinMode(BUILTIN_LED_PIN,	OUTPUT);				//	Set	Pin	13	(digital)	to	OUTPUT	mode
}

/*	
	*	loop()	repeats	forever	after	setup()	completed
	*/
void	loop()	{
			digitalWrite(BUILTIN_LED_PIN,	HIGH);		//	Set	Pin	13	to	HIGH	(5V)	to	turn	ON	its	built-in	LED
			delay(1000);																		//	Delay	in	msec
	
			digitalWrite(BUILTIN_LED_PIN,	LOW);			//	Set	Pin	13	to	LOW	(0V)	to	turn	OFF	its	built-in	LED
			delay(1000);																		//	Delay	in	msec
}

3.	 Click	"Verify"	button	(or	"Sketch"	menu	⇒	"Verify/Compile";	or	Ctrl-R)	to	compile	the	code.
4.	 Click	"Upload"	button	(or	"File"	menu	⇒	"Upload";	or	Ctrl-U)	to	upload	the	code	onto	the	Arduino	board.	You	should	see	the	LED	under

Pin	13	blinking	(in	orange)	indicating	program	loading.
If	 you	see	 the	error	message	 "avrdude:	stk500_getsync():	not	in	sync:	resp=0x30".	Goto	menu	 "Tool"	menu	⇒	 "Serial
Port"	⇒	choose	the	correct	"COMx".	You	can	verify	your	COM	port	via	"Control	Panel"	⇒	"Device	Manager"	⇒	Take	note	of	the	COM	port
setting	for	"Arduino	UNO".

5.	 After	 the	program	 is	 loaded,	you	shall	see	 the	Pin-13	LED	(under	 the	Pin	13,	same	LED	as	program	 load)	 turning	on	and	off	every	1
second,	forever.

Dissecting	the	Program

An	arduino	program	(called	sketch)	has	at	 least	two	functions:	setup()	which	runs	once	at	startup	(or	reset)	for	 initialization	tasks;	and
loop()	which	repeats	forever	after	setup()	completed.

The	pinMode(pinNumber,	INPUT|OUTPUT)	function	sets	the	pinNumber	to	either	INPUT	or	OUTPUT.

The	digitalWrite(pinNumber,	HIHG|LOW)	 function	 sets	 the	digital	 output	 pin	 to	 either	HIGH	 (5V)	 or	LOW	 (0V).	Take	note	 that	 a
digital	output	pin	can	provide	a	maximum	current	of	40mA	or	20mA	continuously.

The	#define	is	resolved	at	compiled	time,	which	may	reduce	the	SRAM	footprint	(comparing	of	using	a	variable).

Examples

Arduino	IDE	provides	many	examples,	under	"File"	⇒	"Examples",	or	"File"	⇒	"Sketchbook".
For	example,	the	above	codes	can	be	found	under	"File"	⇒	"Examples"	⇒	"Built-in	Examples"	⇒	"01.Basics"	⇒	"Blink".

Processing	Sketchbook	Software

Arduino	IDE	is	based	on	processing	(@	https://processing.org/),	which	"is	a	flexible	software	sketchbook	and	a	language	for	learning	how	to
code	within	the	context	of	the	visual	arts".

3.		Get	Set,	but	Before	Go...

3.1		Electronic	Tools	and	Equipment

MUST	HAVE

Digital	 Multimeter	 (You	 can	 buy	 a	 cheap	 multimeter	 for	 less	 than	 $20).	 Find	 a	 YouTube	 video	 to	 learn	 how	 to	 use	 the	 digital
multimeter.	You	need	to	know:

How	to	measure	resistance.

How	to	do	Continuity	Check.

How	to	measure	DC	voltage.

How	to	measure	DC	current	(in	series).

https://processing.org/

Take	 note	 that	 the	 digital	multimeter	 is	mainly	 used	 to	measure	 resistance,	 DC	 voltage	 and	DC	 current.	 You	 need	 an	 oscilloscope	 to
visualize	waveforms.

Toolbox:	Screw	drivers	 (flat	 and	 cross),	wire	 cutter,	wire	 stripper,	 plier,	Power	main	 test	 pen/Screw	driver,	 Insulation	 tapes,	masking
tapes	(for	marking,	sealing),	22-Gauge	solid	wires	(red,	black	and	some	colors),	breadboard,	etc.

Soldering	Station	(with	stand,	third	hand,	wet	sponge,	solder	sucker,	solder	wick):	Read	"How	to	Solder:	Through-Hole	Soldering",	or
find	a	YouTube	video	to	 learn	on	how	to	do	soldering.	For	soldering	 iron	with	a	 temperature	control,	set	 it	 to	about	350-370°C	to	begin
with.
Breadboard	is	meant	for	prototyping	only.	You	need	to	solder	on	PCB	for	your	final	product!

NICE	to	HAVE

DC	Power	Supply	(e.g.,	160W	Digital	Bench	Power	Supply,	0	to	32V	DC,	0	to	5A)	-	You	cannot	survive	with	batteries.
You	need	to	know:

How	to	set	the	output	DC	voltage.

How	to	set	the	output	DC	current	LIMIT	(to	avoid	generating	smoke!)

How	to	read	the	voltage	and	current	output	values.

A	good	DC	power	supply	has	2	output	channels,	denoted	as	master	and	slave	(some	has	an	additional	channel	3	for	5V).	They	can	be
configured	as:

Isolated:	each	supply	operates	as	completely	separate	and	independent	unit.	This	is	the	most	frequently-used	mode.

Parallel:	output	from	slave	unit	is	channeled	into	the	master	unit,	to	increase	it	current	capability.

Series:	Slave's	positive	output	terminal	is	internally	connected	to	master's	negative	output	terminal.

You	can	read	out	the	supply	voltage	and	current	from	the	panel.	Watch	the	current	reading	carefully	to	avoid	damaging	your	circuitry.
The	DC	power	supplies	usually	function	in	constant-voltage	mode	(which	maintains	constant	voltage).	You	can	set	the	current	limit	for	the
supplies	(to	protect	your	circuitry).	Once	the	current	limit	is	reached,	the	supply	functions	in	constant-current	mode	and	will	not	supply	more
current.
For	production,	you	can	get	a	switching	DC	power	supply	at	reasonably	low	cost.	You	need	to	know	your	voltage	(5V,	12V,	etc.)	and	the
max	current	rating	(3A,	5A,	10A,	50A,	etc.)

https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering

Really	NICE	to	Have

Oscilloscope

Function	Generator

3.2		Etiquette

Please	observe	good	electronic	work	etiquette:

Do	not	rest	the	Arduino	Board	on	a	metal	surface,	unless	you	want	to	generate	smoke!	Paste	an	insulating	masking	tape	below	or	use	a
proper	plastic	(or	wooden)	cover.

Disconnect	the	power	to	the	Arduino	board	when	you	are	patching	the	circuit,	to	prevent	short-circuiting	and	burning	the	Arduino	board.

BE	PATIENCE!	BE	SYSTEMATIC!	DON'T	CUT	CORNER!

Tidy	up	your	workbench.	Place	all	your	components	and	loose	parts	in	boxes.

Wires	come	in	COLOR	for	purpose.	For	DC	circuit,	use	RED	for	power	and	BLACK	for	ground.	Color-blind,	unfortunately,	will	not	pass	the
medical	examination	to	practice	electronics	(because	we	use	color	codes	in	electronics).

Use	the	correct	cables	(gauge	number)	and	connectors	for	your	project.

Trim	your	connecting	wires	to	the	right	(minimal)	length	for	your	final	product	-	you	are	not	using	them	to	catch	fish.

Draw	proper	design	diagram,	circuit	diagram,	connection	diagram,	etc.

Writing	good	programs.	Comment	your	programming	statements.

"A	craftsman	is	measured	by	his	toolbox".	Get	and	use	the	right	tools.

......

4.		LEDs

I	shall	follow	the	exercises	in:

"SparkFun	 Inventor's	 Kit	 (SIK)	 Experiment	 Guide	 -	 v4.0"	 (the	 latest	 version	 at	 the	 time	 of	 this	 writing)	 @
https://learn.sparkfun.com/tutorials/sparkfun-inventors-kit-experiment-guide---v40/introduction.

The	 older	 version	 of	 "SparkFun	 Inventor's	 Kit	 (SIK)	 Guide	 for	 Arduino"	@	 https://www.sparkfun.com/products/retired/11227,	 with	 PDF
User's	Guide	@	http://cdn.sparkfun.com/datasheets/Kits/SFE03-0012-SIK.Guide-300dpi-01.pdf.

"Oomlout's	Arduino	Experimentation	Kit	(ARDX)"	@http://www.oomlout.com/a/products/ardx/.

I	 shall	 provide	more	 technical	 explanation	 and	 computation	 for	my	 engineering	 students.	 You	 need	 the	 hardware	 components	 to	 do	 these
exercises.	I	suggest	you	purchase	an	"Arduino	Starter	Kit"	which	comes	with	common	electronic	components.

4.1		LED	Ex	1:	Blinking	LED	(with	a	Current	Limiting	Resistor)

Reference:	"SIK	Circuit	1A:	Blink	an	LED"	or	"Oomlout	CIRC01	Getting	Started"

Objective:	To	turn	ON	and	OFF	an	LED	repeatedly	(blink)	every	second.

Components

1x	LED	(5mm	Red	or	White).	LED	has	polarity.	The	shorter	 leg	with	a	 flat	spot	 is	 the	cathode	(-).	The	 longer	 leg	 is	 the	anode	(+).	You
should	also	know	how	to	use	a	digital	multimeter	to	check	the	polarity	of	a	diode.

1x	330Ω	resistor.

https://learn.sparkfun.com/tutorials/sparkfun-inventors-kit-experiment-guide---v40/introduction
https://www.sparkfun.com/products/retired/11227
http://cdn.sparkfun.com/datasheets/Kits/SFE03-0012-SIK.Guide-300dpi-01.pdf
http://www.oomlout.com/a/products/ardx/
https://learn.sparkfun.com/tutorials/sparkfun-inventors-kit-experiment-guide---v40/circuit-1a-blink-an-led
http://www.oomlout.com/oom.php/products/ardx/circ-01

Circuit	Diagram

Program

Run	the	program	in	"$ARDUINO_HOME\examples\01.Basics\Blink\Blink.ino",	or	the	following:

/*
	*	Blink:	Turns	ON	an	LED	on	for	one	second,	then	turn	OFF	for	one	second,	repeatedly.
	*/
#define	LED_PIN	13			//	Give	it	a	name	for	easy	referencing

/*	
	*	setup()	run	once	for	initialization
	*/
void	setup()	{
			pinMode(LED_PIN,	OUTPUT);		//	initialize	the	digital	pin	as	output
}

/*
	*	loop()	repeats	forever	after	setup()	completes
	*/
void	loop()	{
			digitalWrite(LED_PIN,	HIGH);		//	turn	the	LED	ON	by	making	the	voltage	HIGH	(5V)
			delay(1000);																		//	wait	for	the	given	millisecond
	
			digitalWrite(LED_PIN,	LOW);			//	turn	the	LED	OFF	by	making	the	voltage	LOW	(0V)
			delay(1000);																		//	wait	for	the	given	millisecond
}

An	arduino	program	(called	sketch)	has	at	 least	two	functions:	setup()	which	runs	once	at	startup	(or	reset)	for	 initialization	tasks;	and
loop()	which	repeats	forever	after	setup().

The	program	initializes	(in	setup())	by	setting	Pin	13	to	OUTPUT	mode	(via	pinMode()),	which	could	output	a	digital	HIGH	(5V)	or	LOW
(0V).	It	then	outputs	a	HIGH	(5V),	delays	for	1000	msec	(1	sec),	outputs	a	LOW	(0V),	delays	for	1000	msec,	repeatedly	(in	loop()).

Dissecting	the	Circuit	for	Engineering	Students

Unlike	resistor,	LEDs	are	non-linear	devices	and	they	do	not	follow	Ohm's	law.	LEDs	are	treated	as	current	devices	with	a	constant	voltage
drop.	The	suggested	forward	current	for	a	typical	5mm	LED	is	20mA	to	get	its	full	brightness.

In	 practical	 design,	 we	 treat	 LED's	 forward	 voltage	 as	 constant	 at	 3.6V	 (for	 white,	 blue	 and	 green	 LED),	 or	 2.2V	 (for	 red	 LED,	 see
datasheet).

We	need	to	choose	a	resistor	R	(known	as	current	limiting	resistor)	such	that	IL=20mA	flowing	through	the	resistor	and	the	LED.	Suppose

https://www.sparkfun.com/products/9590

that	the	supply	is	5V	(digital	pin	13	outputs	5V	when	it	is	set	to	HIGH),	R=(5-3.6)V/20mA=70Ω	(for	white,	green	or	blue	LED)	or	R=(5-
2.2)V/20mA=140Ω	(for	red	LED).	Using	a	higher	resistor	results	in	lower	current,	and	thus	a	dimmer	LED	(or	NOT	lighting	up).	Using	a
lower	resistor	results	in	higher	current.	This	wastes	power	and	may	burn	the	LED.	In	engineering	design,	this	R	value	serves	as	a	starting
point.	Observe	the	brightness,	measure	the	voltage/current,	then	fine-tune	the	R	value.

The	 power	 consumption	 of	 the	 LED	 is	 20mA*3.6V=72mW	 (white,	 green,	 blue	 LED),	 or	 20mA*2.2V=44mW	 (red	 LED).	 Total	 power
consumed	is	20mA*5V=100mW.

Take	note	that	the	Arduino's	digital	output	pins	provide	a	maximum	current	of	40mA	(or	20mA	of	continuous	current),	which	is	sufficient	to
drive	1-2	LEDs	in	parallel	(@	20mA	each),	but	not	more	than	two	LEDs	to	their	full	brightness.

2	 LEDs	 in	 series	 has	 voltage	 drop	 of	(2.2	to	3.6)*2=4.4	to	7.2V.	 A	 5V	 supply	 cannot	 drive	more	 than	 2	 LEDs	 in	 series.	We
typically	use	a	12V	supply	to	drive	3	LEDs	in	series	(in	some	LED	strips).

Practices	for	Engineering	Students

Different	LEDs	from	different	manufacturers	have	different	rating	(forward	current	and	forward	voltage).	Worst	still,	you	will	not	be	able	to	find
the	correct	datasheet.	So,	dig	out	your	multimeter	and	measure	yourself!

Note:	If	you	are	given	330Ω	resistor	only,	you	can	connect	two	in	parallel	to	get	165Ω	(by	applying	Ohm's	law);	three	in	parallel	to	get	110Ω.

1.	 Set	pin	13	to	HIGH	(to	turn	on	the	LED):

a.	 Using	a	digital	multimeter,	measure	the	voltage	at	pin	13	and	the	voltage	across	the	LED.	To	measure	voltage,	place	the	meter	in
parallel	(as	illustrated)	and	set	it	to	measure	20V	(or	auto-range).

b.	 Apply	Ohm's	law	to	compute	the	current	flowing	through	the	resistor	(this	same	current	flowing	through	the	LED).

c.	 Using	a	digital	multimeter,	measure	this	current	and	compare	with	the	computed	value.	To	measure	current,	BREAK	the	circuit	and
place	the	meter	in	SERIES	(as	illustrated)	and	set	the	meter	to	measure	200mA	(or	auto-range).

ANS:

For	white	LED	with	a	330Ω	resistor,	measured	LED	forward	voltage	=	2.77V,	measured	forward	current	=	5.9mA.	Computed	IL=(5-
2.77)/330=5.75mA.

For	white	LED	with	a	165Ω	resistor,	measured	LED	forward	voltage	=	2.85V,	measured	forward	current	=	10.6mA.	Computed	IL=
(5-2.85)/165=13mA.

For	red	LED	with	a	330Ω	resistor,	measured	LED	forward	voltage	=	1.90V,	measured	forward	current	=	8.4mA.	Computed	IL=(5-
1.90)/330=9.3mA.

For	red	LED	with	a	165Ω	resistor,	measured	LED	forward	voltage	=	1.95V,	measured	forward	current	=	15mA.	Computed	IL=(5-
1.95)/165=18.5mA.

Take	note	that	the	forward	voltages	measured	are	fairly	constant;	while	the	forward	current	and	LED	brightness	changes.

2.	 Set	pin	13	to	LOW	(to	turn	off	the	LED).	Repeat	the	above	measurements.

3.	 Repeat	the	above	for	RED,	WHITE,	GREEN	and	BLUE	LEDs.

4.	 Repeat	the	above	for	two	LEDs	in	parallel.

5.	 Repeat	the	above	for	two	LEDs	in	series.

6.	 Repeat	the	above	for	three	LEDs	in	parallel.

LED	Exercise	1a:	Change	the	Blinking	Time

To	change	the	blinking	rate,	you	can	modify	the	delay,	currently	set	at	1000	msec	(or	1	sec).

4.2		LED	Ex	2:	Controlling	the	Brightness	of	a	Single-Color	LED	via	PWM

To	control	 the	brightness	of	 the	LED,	use	pin	9	 (instead	of	pin	13),	which	can	produce	a	PWM	(Pulse	Width	Modulation)	 square	wave	via
function	analogWrite(pinNumber,	dutyCycle)	(PWM	Tutorial).	The	dutyCycle	sets	the	ON	duration	of	the	square	wave,	with	value
ranges	from	0	(always	OFF)	to	255	(always	ON).

Try	the	following	program:

#define	LED_PIN	9							//	LED	connected	to	digital	PWM	pin	9
#define	DUTY_CYCLE	192		//	Duty	cycle	for	the	PWM	over	[0,255]
	
/*	Setup()	runs	only	once	*/
void	setup()	{
			pinMode(LED_PIN,	OUTPUT);		//	Set	to	OUTPUT	mode
}

/*	loop()	repeats	forever	*/
void	loop()	{
			analogWrite(LED_PIN,	DUTY_CYCLE);		//	Try	other	values	from	0	to	255
			delay(1000);																							//	time	delay	in	msec	before	repeat

			//	Fade	in	from	min	to	max	in	increments	of	5
			for	(int	fadeValue	=	0	;	fadeValue	<=	255;	fadeValue	+=	5)	{
						analogWrite(ledPin,	fadeValue);
						delay(30);	//	small	delay	to	see	the	effect
			}

			//	Fade	out	from	max	to	min	in	decrements	of	5
			for	(int	fadeValue	=	255	;	fadeValue	>=	0;	fadeValue	-=	5)	{
						analogWrite(ledPin,	fadeValue);
						delay(30);
			}
}

The	brightness	of	the	LED	is	proportional	to	the	duty	cycle	(ON	duration).	For	example,	if	the	value	of	duty	cycle	is	64,	the	LED	is	25%	of	the
full	brightness.

LED	Exercise	2a:	Fading	LED

Use	pin	9	again,	and	 run	 the	program	 in	 "$ARDUINO_HOME\examples\03.Analog\Fading\Fading.ino".	Study	 the	program.	Also	 run
and	study	"$ARDUINO_HOME\examples\01.Basics\Fade\Fade.ino".

4.3		LED	Ex	3:	Multiple	LEDs

Follow	"CIRC02	8	LEDs	Fun"	@	http://www.oomlout.com/oom.php/products/ardx/circ-02.

4.4		LED	Ex	4:	RGB	4-Lead	LED

[TODO]

4.5		LED	Ex	5:	Controlling	the	Color	of	RGB	4-Lead	LED

[TODO]

5.		LED	-	NOT	for	the	Dummies

References
1.	 Ron	Lenk	and	Carol	Lenk,	"Practical	Lighting	Design	with	LEDs",	Wiley,	2011.

2.	 Sparkfun's	Tutorial	-	LED	@	https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds.

5.1		LED	Basics

http://arduino.cc/en/Tutorial/PWM
http://www.oomlout.com/oom.php/products/ardx/circ-02
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds

LED	is	a	Diode

An	LED	(Light	Emitting	Diode)	is	a	diode!

A	diode	conducts	current	in	the	forward	direction	(from	anode	to	cathode)	and	not	the	reverse	direction.

1.	 In	the	forward	direction,	current	flows	from	the	anode	to	the	cathode	and	light	is	emitted	(all	diodes	emit	a	bit	of	light,	but	the	amount	of
light	 emitted	by	ordinary	diodes	 is	 very	 low).	The	voltage	and	current	 across	 the	diode	 is	 called	 forward	 voltage	 and	 forward	 current,
respectively.	The	forward	voltage	for	a	typical	diode	ranges	from	0.7V	to	1.0V.

2.	 In	the	reverse	direction,	no	current	(or	a	minimal	leakage	current)	flows	thru	the	diode.

An	LED	has	a	much	higher	forward	voltage	than	the	ordinary	diodes.	While	a	diode	has	a	voltage	drop	of	about	0.7-1.0V,	an	LED	may	drop
from	2.2V	(Red	LED)	to	3.6V	(Green,	Blue	and	White	LEDs).	This	is	because	LEDs	are	not	made	from	silicon	(it	is	hard	to	get	silicon	to	emit
light),	but	 from	other	 semiconductor	materials	 (such	as	AlGaInP,	 InGaN,	 InGa1N).	Take	note	 that	white,	green	and	blue	LED	has	a	higher
forward	voltage	than	red	LED.	This	is	because	...

The	typical	forward	current	for	a	5mm	LED	is	20mA,	resulting	in	power	consumption	of	20mA*(2.2-3.6)V	=	44mW	to	72mW.

LEDs	are	Current	Devices

A	resistor	is	a	linear	device	that	follows	ohm's	law,	i.e.,	V	=	I*R.

A	diode	is	a	non-linear	device,	which	does	not	follow	ohm's	law.	The	forward	current	If	and	forward	voltage	Vf	are	exponentially	related,	i.e.,
If	=	I0*exp(k*Vf);	or	Vf	=	(1/k)ln(If/I0).	Since	If	and	Vf	are	exponentially	related,	doubling	If	results	in	only	small	 increase	in
Vf.	Hence,	in	practice,	we	can	assume	that	the	forward	voltage	Vf	is	always	the	same	(e.g.,	2.2V	for	red	5mm	LED,	3.6V	for	green,	blue	and
white	5mm	LED),	regardless	of	the	forward	current	If.	 In	other	words,	we	treat	diodes	as	current	devices.	We	control	 the	current	to	get	the

desired	performance	 (e.g.,	 20mA	 for	a	5mm	LED	 to	get	 its	 full	 brightness).	Furthermore,	 as	 voltage	 is	 constant,	 the	power	 consumption	 is
determined	by	the	current	too	(e.g.,	4.4mW	for	red	LED,	7.2mW	for	white	LED).

[TODO]	Voltage-Current	Graph

Classes	of	LEDs

LEDs	can	be	classified	into	two	classes:

1.	 Small	Devices:	 typically	5mm	(or	T1	3/4)	devices	that	run	at	20mA.	They	are	used	as	 indicator,	e.g.,	cell	phone	backlights,	 flashlights,
road	signage,	 truck	taillights,	 traffic	 lights,	automobile	dashboards,	and	so	on.	A	typical	5mm	white	LED,	with	 forward	current	of	20mA
and	 forward	 voltage	 of	 3.6V,	 has	 a	 power	 of	 72mW.	 You	 need	 14	 of	 them	 to	 make	 a	 1W	 flashlight;	 194	 of	 them	 to	 make	 a	 14W
fluorescent	bulb	replacements	(if	we	simply	compare	the	wattages,	ignoring	the	more	important	lumens).

On	LED	Strips,	you	will	find	the	surface-mount	5050	RGB	LED	module.	Each	module	has	3	LEDs,	in	red,	green	and	blue.	It	takes	60mA
(3x20mA)	for	full	WHITE.

2.	 Power	 Devices:	 typically	 1-3W	 devices	 that	 run	 at	 350mA.	 They	 are	 used	 for	 lighting,	 rather	 than	 as	 indicators,	 e.g.,	 flashlights,
incandescent	bulb/tube	replacements,	large-screen	TVs,	projector	lights,	automotive	headlights,	airstrip	runway	lighting,	and	so	on.

5.2		Driving	LEDs	(High-Current	Load)	using	Power	Transistor

As	mentioned,	 the	maximum	output	current	an	Arduino's	digital	pin	can	supply	 is	40mA	(or	20mA	continuous	current).	You	cannot	use	 it	 to
drive	more	than	two	20mA	LEDs	in	parallel.	Likewise,	 the	digital	pin	outputs	5V.	You	cannot	use	 it	 to	drive	3	LEDs	in	series	(2.2V*3=6.6V).
Suppose	that	we	want	to	drive	many	LEDs	in	parallel	via	a	single	Arduino's	digital	output	pin,	we	need	an	external	power	supply	and	a	power-
transistor	switch,	which	can	switch	amperes	of	current.

Choosing	a	Power	Transistor

The	LED	applications,	we	typically	choose	a	"TO-200"	package	power	transistor,	which	can	dissipate	1W,	as	shown	below.	You	can	attach	an
external	heat	sink	if	needed.

There	are	two	types	of	transistors:

1.	 Bipolar	 Junction	 Transistors	 (BJT):	 BJT	 has	 three	 terminals,	 marked	 as	 Base	 (B),	 Emitter	 (E)	 and	 Collector	 (C).	 BJT	 is	 a	 current-
controlled	device	where	the	Base's	current	controls	the	current	at	the	collector	and	emitter.	There	are	two	types	of	BJT:	NPN	and	PNP.
They	are	identical,	except	on	the	polarity.

2.	 Metal	Oxide	Semiconductor	Field-Effect	Transistor	(MOSFET):	MOSFET	also	has	three	terminals,	marked	as	Gate	(G),	Source	(S)	and
Drain	 (D).	Unlike	BJT,	MOSFET	 is	a	voltage-controlled	device,	where	 the	Gate's	voltage	controls	 the	current	at	 the	source	and	drain.
There	are	two	types	of	MOSFET,	n-channel	and	p-channel.

MOSFETs	are	more	common	nowadays	for	high	power	applications,	as	they	handle	power	more	efficiently.	BJTs	are	still	used	for	low	current
applications	(like	switches),	as	they	are	cheaper.

For	examples,

IRLB8721PbF	N-channel	Power	MOSFETs	 (Datasheet):	 can	 switch	30V	of	 16A	 (750	LEDs	@	20mA)	with	 signal	 of	 3.3V	and	5V.	Can
dissipate	up	to	2	watts	(400mA	@	5V)	without	a	heat	sink	(at	room	temperature).

IRF630	N-Channel	Power	MOSFET	can	switch	200V	of	9A,	VGS=20V.	IRF520	N-Channel	Power	MOSFET	can	switch	100V	of	9A.

TIP120/121/122	NPN	Epitaxial	Darlington	Transistor	(Datasheet):	TIP120/121/122	can	switch	60/80/100V	of	5A	(250	LEDs	@	20mA).

Transistor	as	an	Electronic	Switch

A	transistor	can	function	as	an	amplifier	(operating	in	active	mode)	or	a	switch	(operating	in	saturation	mode).

In	this	section,	we	shall	focus	on	transistor	as	a	switch.	Just	like	a	mechanical	switch,	you	push	it	in	to	connect	the	circuit,	and	push	it	out	to
disconnect.	A	transistor	can	similarly	serve	as	an	"electronic"	switch.

https://cdn-shop.adafruit.com/datasheets/irlb8721pbf.pdf
https://cdn-shop.adafruit.com/datasheets/TIP120.pdf

N-Channel	MOSFET	as	a	Switch

An	N-channel	MOSFET	can	be	served	as	a	active-high	voltage-controlled	switch.	You	set	 the	Gate	 (G)	 to	HIGH	 to	connect	 (switch-on)	 the
Drain	(D)	and	Source	(S);	and	set	the	Gate	(G)	to	LOW	to	disconnect	(switch-off)	Drain	(D)	and	Source	(S),	as	illustrated.

The	n-channel	MOSFET	is	switched	on	when	VGS>VTH	(threshold	voltage).

When	the	transistor	is	switched	on	by	setting	VIN=HIGH,	VDS≈0.2V,	and	IL	is	controlled	by	the	current	limiting	resistor	RL.	Suppose	that
the	load	is	2.2V	and	350mA,	VDD=5V,	RL=(5-2.2-0.2)V/350mA=7Ω.

When	the	transitory	is	switched	off	by	setting	VIN=LOW,	IL=0.

You	may	switch	the	position	of	RL	and	the	load.

MOSFET	has	an	extremely	high	input	resistance	(almost	infinite)	making	it	possible	to	interface	with	nearly	any	logic	gate	or	driver.

It	 is	common	practice	to	place	a	high-value	resistor	RGS	(10KΩ	to	1MΩ)	between	the	gate	and	source.	It	 is	used	to	bleed-off	the	electric

charge	from	the	gate	and	turn	off	 the	MOSFET.	Otherwise,	very	small	currents	 from	your	 finger,	capacitive	coupling,	 inductive	coupling,
etc,	may	change	the	gate	voltage.

The	Gate	resistor	RG	is	optional.	A	small	resistor	(100Ω)	could	be	used	to	prevent	ringing,	by	dampen	the	ringing.

Suppose	that	we	are	driving	the	following	load:

Suppose	that	VDD=5V,	RL=(5-2.2-0.2)V/100mA=26Ω.

P-Channel	MOSFET	as	a	Switch

Similar	to	N-channel	MOSFET,	but	P-channel	MOSFET	is:

Active	LOW,	i.e.,	Vin=0V	to	switch	on,	or	VSG>VTH	(threshold	voltage).

You	can	connect	one	end	of	the	load	to	the	ground.

p-channel	acts	as	a	"high-side"	switch,	which	is	less	popular	than	n-channel	"low-side"	switch.

For	n-channel,	the	Source	(S)	is	connected	to	the	Ground;	for	n-channel,	Source	(S)	is	connected	to	VDD.

NPN	BJT	as	a	Switch

For	a	NPN	transistor,	you	set	the	base	(B)	to	high	(such	that	IB>ITH	threshold	current)	to	connect	(switch	on)	the	collector	(C)	and	Emitter	(E);
and	set	the	base	(B)	to	low	to	disconnect	(switch	off)	collector	(C)	and	Emitter	(E).

A	NPN	transistor	functions	as	a	current-controlled	electronic	switch,	when	it	is	operating	in	the	so-called	saturation	mode:

1.	 A	small	base	current	IB>ITH	(threshold	current)	turns	on	the	transistor,	results	in	current	flowing	thru	the	collector	and	the	emitter	(and
the	load).

2.	 If	IB=0,	the	transistor	is	switch	OFF,	results	in	no	current	flow	thru	the	collector	and	emitter	(and	the	load).

You	may	switch	the	position	of	the	RL	and	the	load.

We	can	turn	ON	an	NPN	transistor	by	setting	VIN	to	high	(say	5V),	results	in	IB	flowing	from	base	to	emitter.	When	the	transistor	is	turn	on,	we

can	accept	that	VBE=0.8V	and	VCE=0.2V	(recall	that	diodes	are	treated	as	current	devices,	with	constant	voltage).	Suppose	that	VDD=5V	and
the	desired	IL=100mA,	RL=(5-2.2-0.2)V/100mA=26Ω.	To	compute	RB,	we	use	IC=hFE*IB,	where	hFE	is	the	amplification	factor.	We	can

use	hFE=10	 (or	20)	at	saturation	region	(amplification	factor	at	saturation	 is	much	lower	than	active	region).	Suppose	that	VIN=5V,	we	have
RB=(5-0.8)V/(100mA/10)=420Ω.	If	the	transistor	does	not	turn	on,	use	a	lower	resistance	value.	(Note:	These	values	serve	as	a	starting
point	for	your	design,	use	a	multimeter	to	measure	the	voltages	and	currents	to	fine	tune	the	values.)

We	can	turn	OFF	an	npn	transistor	by	setting	VIN	to	low	(0V).	In	this	case,	IB=0,	results	in	IC=0.

PNP	BJT	as	a	Switch

Active	low	(instead	of	active	high	for	NPN).

"high-side"	switch	(instead	of	"low-side"	switch	for	NPN).

One	terminal	of	load	can	be	connected	to	ground	(instead	of	one	terminal	to	VDD	for	NPN).

Emitter	connects	to	VDD	(instead	of	Ground	for	NPN).

Exercises

Use	a	transistor	(NPN	BJT	or	N-channel	MOSFET)	to	drive	5	LEDs	in	parallel.	Use	a	multimeter,	measure	the	currents	and	voltages.

6.		LED	Strips

An	LED	Strip	(also	known	as	an	LED	Tape	or	Ribbon	Light)	is	a	flexible	circuit	board	populated	by	surface-mounted	LEDs	(such	as	5050	SMD
RGB	LED	module)	and	other	components,	and	usually	comes	with	an	adhesive	backing.	Some	strips	are	waterproof	for	outdoor	applications.

LED	strips	can	be	classified	as:

1.	 Non-addressable	(or	Analog):	You	cannot	control	individual	LEDs.	All	LEDs	show	the	SAME	color.

2.	 Addressable	(or	Digital):	Each	segment	has	an	Driver	IC	chip	(containing	latches	and	shift	registers).	You	can	control	the	color	of	each
LED	 individually	 by	 sending	 serial	 digitally	 coded	 data	 to	 the	 chips,	 via	 the	 Data-In	 (DI)	 and	 an	 optional	 Clock-In	 (CI)	 leads,	 which
propagates	down	the	segments.	They	are	more	expensive.

An	LED	strip	composes	of	identical	segments.	Each	segment	has	1-3	LED	modules,	with	current	limiting	resistors.	All	segments	are	powered	in
parallel.	 LED	strips	 typically	 operate	on	12V	 (for	 3	LED	modules	 in	 series	per	 segment)	 or	 5V	 (for	 one	LED	module	per	 segment).	This	 is
because	an	LED	has	forward	voltage	of	2.2-3.6V	and	5V	is	not	sufficient	to	drive	more	than	one	LEDs	in	series.

Each	 red,	green	and	blue	LED	draws	20mA.	Hence,	 full	white	draws	60mA.	For	a	20-RGB-module	per	meter,	 it	 draws	60mA*20=1.2A	per
meter,	which	is	HUGE!!!

You	CANNOT	power	the	LED	strips	by	the	Arduino	board	(<500mA	-	not	enough	current).	You	need	to	connect	to	an	external	power	supply.

6.1		Non-Addressable	(Analog)	12V	RGB	LED	Strip

4	leads,	marked	as	+12V,	G,	R,	and	B.

Each	segment	has	three	5050	RGB	LED	modules	connected	in	series,	with	common-anode	(+)	connected	to	12V	lead.	Each	component
has	a	current	limiting	resistor	(150-390Ω).	All	segment	are	connected	in	parallel.

Given	that	the	forward	voltage	of	an	LED	is	between	2.2-3.6V,	three	LEDs	in	series	take	6.6-10.8V.	Hence,	you	need	a	9-12V	supply	to
drive	three	LEDs	in	series.	Each	LED	draws	20mA.

Maximum	12V	@	60mA	per	strip	segment.

Each	segment	is	50mm	or	100mm,	i.e.,	20	or	10	segment	per	meter.	For	20	segments	per	meter,	the	maximum	current	is	1.2A	per	meter.
(My	own	measurements	for	a	20	segments	per	meter	RGB	LED	strip	draws	about	970mA	@	12V;	and	370mA	@	9V	(which	is	sufficiently
bright.)

Transistor	Driver

You	need	an	external	power	source	to	drive	the	LED	strip.	You	also	need	3	Power	Transistors	(e.g.,	N-channel	MOSFET	or	NPN	BJT)	to	drive
the	current	for	each	of	the	RGB	components,	as	follows.	The	arduino	pins	are	connected	to	RIN,	GIN,	BIN	to	switch	on/off	the	RGB	LEDs.

Arduino	Connection

1.	 Connect	RIN,	GIN	and	BIN	to	Arduino	pins;

2.	 Connect	the	12V/GND	to	power	supply;

3.	 Connect	the	GND	from	power	supply	to	arduino	(to	establish	common	ground).

To	control	the	brightness	and	color	of	the	LEDs,	you	can	use	PWM	output	to	drive	RIN,	GIN	and	BIN	to	turn	on/off	the	LED	at	the	specified	duty
cycle.

[TODO]	more

6.2		Addressable	(Digital)	RGB	LED	Strip

Some	addressable	LED	strips	have	4	leads,	labeled	as	GND/DI/CI/+5|12V	or	GND/DO/CO/+5|12V.	DI	and	CI	stand	for	"Data-In"	and	"Clock-
In";	while	"DO"	and	"CO"	stands	for	"Data-Out"	and	"Clock-Out".	We	need	to	connect	to	the	"IN"	end.	The	"OUT"	end	is	used	to	cascade	to	the
"IN"	end	of	another	strip.

There	is	an	LED	driver	clip	for	each	segment,	which	contains	latches	and	shift	registers.	Data	(thru	DI)	propagates	through	shift	registers	on
each	LED,	using	the	clock	at	CI.	The	first	LED	driver	reads	the	first	24	bits	of	data	(8	bits	each	for	Red,	Green	and	Blue)	on	the	DI,	the	second
LED	driver	reads	the	next	24	bits,	and	so	on.

Some	addressable	LED	strips	have	only	3	leads,	without	the	CI	(Clock-In).	In	this	case,	you	need	to	send	the	coded	data	in	a	specific	timing
(thru	DI),	typically	at	800kHz	or	400kHz.

Addressable	LED	strips	come	in	12V	or	5V.	For	the	12V	version,	there	are	3	LED	modules	in	series	for	each	segment.	For	5V	version,	there	is
only	 one	 LED	module	 per	 segment	 (This	 is	 because	 LED	has	 forward	 voltage	 of	 2.2-3.6V,	 5V	 supply	 cannot	 drive	more	 than	 one	 LED	 in
series).

Connecting	addressable	LED	strip	is	straight-forward:

1.	 Connect	the	LED	Strip's	+12V/+5V	and	GND	to	an	external	power	supply	directly.

2.	 Connect	DI	and	CI	to	any	of	the	Arduino's	digital	pins.

3.	 Join	the	power	supply's	GND	and	Arduino's	GND	to	establish	a	common	ground	(IMPORTANT!!!)

You	can	simplify	your	programming	using	library	codes.	There	are	two	popular	libraries	for	programming	addressable	LED	strip:	NeoPixel	and
FastLED	(work	with	3-wire	and	4-wire	chipset)	-	to	be	discussed	below.

3-Lead	12V	RGB	Addressable	LED	Strip	(WS2811)	/	3-Lead	5V	RGB	Addressable	LED	Strip	(WS2812)

WS2812	is	an	integrated	package	of	a	WS2811	LED	driver	IC	chip	and	a	5050	RGB	LED	per	segment	(the	5050	is	a	surface-mount	3-LED
RGB	module,	in	one	5mm	x	5mm	case).	It	can	be	driven	by	5V	supply.	WS2812B	is	an	upgraded	version	of	WS2812.

12V	RGB	LED	strips	has	three	5050	LED	modules	and	a	separate	WS2811	LED	driver	IC	chip	(not	integrated	with	5050).	You	need	12V	to
drive	three	LEDs	in	series.

For	WS2812	5V	RGB	LED	strip,	as	 there	 is	only	one	LED	per	segment,	with	a	 forward	voltage	of	2.2-3.6V,	 it	can	be	powered	by	a	5V
supply.	The	maximum	current	drawn	per	segment	is	60mA	(3x20mA	per	RGB	LED).	For	a	60-segment	per	meter	LED	strip,	the	maximum
current	is	60mA*60=3.6A.	You	need	an	external	5V	power	supply,	instead	of	drawing	the	current	from	the	Arduino	Board.

For	WS2811	12V	RGB	LED	strip,	 the	maximum	current	per	segment	 is	also	60mA.	For	a	20-segment	per	meter	strip,	 it	draws	1.2A	per
meter.

The	 WS2812/WS2811	 LED	 strip	 has	 3	 wires:	 +5V|+12V,	 GND,	 and	 Data-In	 (DI),	 without	 the	 Clock-In	 (CI).	 The	 controller	 WS2811
generates	the	Clock-In	internally.	You	need	to	send	the	serial	coded	data	via	DI	at	a	specific	timing	(400kHz	or	800	kHz).

Connecting	the	strip	to	Arduino	is	simple:

Connect	+5V|+12V	and	GND	to	an	external	power	supply.

Connect	the	power	supply's	GND	to	Arduino's	GND.

Connect	the	DI	to	any	Arduino's	digital	pin.

Programming	WS2811	 LED	 drivers	 requires	 the	 24-bit	 RGB	 color	 code	 for	 each	 pixel	 to	 be	 cascaded	 down	 the	DI	 line	 until	 it	 reaches	 is
intended	 location,	 at	 a	 specific	 timing.	 But	 this	 has	 been	 greatly	 simplified	 by	 using	 library	 codes.	 There	 are	 two	 popular	 libraries	 for
programming	addressable	LED	strip:	NeoPixel	and	FastLED	(described	below).

Read	https://www.tweaking4all.com/hardware/arduino/arduino-ws2812-led/.

4-Lead	Addressable	RGB	LED	Strip	(LPD8806	Chipset)

Read	https://learn.adafruit.com/digital-led-strip.

FastLED	Wiki	@	https://github.com/FastLED/FastLED/wiki/Overview.

Adafruit's	LPD8806	library	@	https://github.com/adafruit/LPD8806.

[TODO]	diagram	+	code

Over	Long	Distance

The	Arduino	digital	pins	are	unable	to	drive	the	LED	strip	over	a	long	distance	(e.g.,	5m).	A	solution	is	to	cut	out	a	segment	of	LED	strip,	place
it	near	 the	Arduino	digital	pin	and	use	 it	as	a	driver	 to	drive	 the	LED	strip	over	a	 long	distance.	The	WS2811	 in	 the	LED	strip	 is	capable	of
driving	over	10m,	according	to	the	specification,	but	in	practice,	a	few	meters.

6.3		NeoPixel

https://www.tweaking4all.com/hardware/arduino/arduino-ws2812-led/
https://learn.adafruit.com/digital-led-strip
https://github.com/FastLED/FastLED/wiki/Overview
https://github.com/adafruit/LPD8806

You	can	download	the	ZIP	file	from	https://github.com/adafruit/Adafruit_NeoPixel.	Unzip	into	Arduino's	library	folder.	Restart	Arduino	IDE	and
check	the	examples	at	"File"	⇒	"Examples"	⇒	"Adafruit	NeoPixel".	Run	and	study	the	examples:	"simple"	and	"striptest".	The	documentation	is
available	@	https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library-use.

You	need	to	customize	these	lines:

#include	<Adafruit_NeoPixel.h>
#define	DATA_PIN	6							//	Data-In	(DI)	connects	to	this	pin
#define	NUM_LEDS	60
Adafruit_NeoPixel	strip	=	Adafruit_NeoPixel(NUM_LEDS,	DATA_PIN,	NEO_GRB	+	NEO_KHZ800);

In	setup():

void	setup()	{
			strip.begin();		//	initialize	strip's	buffer	to	all	zeros	(off)
			strip.show();			//	Update	all	LEDs
}

You	can	then	play	with	the	color	in	loop():

//	Set	the	color	of	a	particular	LED	via	setPixelColor()
uint32_t	color	=	strip.Color(255,	0,	0);		//	Set	R,	G	and	B	of	a	color
strip.setPixelColor(8,	color);												//	Set	LED	8's	color
strip.show();																													//	Update	ALL	LEDs
delay(1000);

//	You	can	retrieve	the	color	of	a	LED	via	getPixelColor()
strip.setPixelColor(9,	strip.getPixelColor(8));
strip.show();																													//	Update	ALL	LEDs
delay(1000);

//	To	switch	an	LED	off	use	the	color	BLACK	(0,0,0)
strip.setPixelColor(8,	strip.Color(0,0,0));		//	Set	LED	color
strip.show();																																//	Update	all	LEDs
delay(1000);

//	Set	all	LEDs	to	green
color	=	strip.Color(0,	255,	0);
for	(int	i	=	0;	i	<	strip.numPixels();	++i)	{
			strip.setPixelColor(i,	color);
}
strip.show();				//	Update	all	LEDs
delay(1000);

Run	and	study	the	other	examples.

NeoPixel	maintains	a	display	buffer,	which	maps	to	all	the	LEDs	in	the	strip.	You	need	to	call	strip.begin()	to	set	up	the	buffer.	You	can
update	the	color	in	the	buffer	via	strip.setPixelColor(index,	color),	and	invoke	strip.show()	to	push	all	the	buffer	values	to	the
strip.

Color	is	represented	in	a	uint32_t,	comprising	red,	green	and	blue	components.

strip.Color(R,	G,	B):	translate	the	R,	G	and	B	into	a	color	value	in	a	uint32_t.

strip.setPixelColor(pixelIndex,	color):	set	the	color	of	a	particular	pixel.

strip.getPixelColor(pixelIndex):	returns	a	32-bit	color	value	of	a	particular	pixel.

strip.numPixels():	returns	the	number	of	pixel	declared	during	initialization.

strip.setBrightness(level):	 adjust	 the	 brightness	 of	 all	 the	 LEDs	 with	 level	 ranges	 from	 0	 (off)	 to	 255	 (max	 brightness).
setBrightness()	was	 intended	 to	 be	 called	once,	 in	setup(),	 to	 limit	 the	 current/brightness	of	 the	LEDs	 throughout	 the	 life	 of	 the
sketch.	It	is	not	intended	as	an	animation	effect	itself!

NeoPixel	 seems	 to	 be	 easier	 in	 controlling	multiple	 strips	 with	 varying	 number	 of	 LEDs,	 you	 can	 allocate	 different	Adafruit_NeoPixel
objects	for	different	strips,	and	in	an	array	control	each	of	the	strips	independently.

[TODO]	Check	if	NeoPixel	works	with	4-wire	chipset	(such	as	LPD8806)	with	Clock-In	(CI)?

SRAM	Constraint

Each	LED	pixel	takes	3	bytes	of	SRAM.

Arduino	UNO	has	2KBytes	of	SRAM,	and	can	drive	682	pixels	even	if	all	the	SRAM	is	used	for	the	LED	buffer.	In	practice,	it	can	drive	about
300-400	pixels.	Arduino	Mega	2560	has	8KBytes	of	SRAM,	and	can	drive	2730	pixels,	but	in	practice,	1500+	pixels.

6.4		FastLED	3.1

FastLED	 is	 the	 successor	 of	 FastSPI_LED	 and	 FastSPI_LED2.	 You	 can	 download	 the	 ZIP	 file	 from	 https://github.com/FastLED/FastLED.
Unzip	into	the	Arduino's	library	folder.	Restart	the	Arduino	IDE.	You	can	find	the	examples	under	"File"	⇒	"Examples"	⇒	"FastLED".	Run	and

https://github.com/adafruit/Adafruit_NeoPixel
https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library-use
https://github.com/FastLED/FastLED

study	examples	such	as	"testleds"	and	"blink".

FastLED	supports	4-wire	and	3-wire	chipset,	with	or	without	Clock-In	(CI).	You	need	to	customize	these	lines:

#include	"FastLED.h"
#define	NUM_LEDS	60				//	Number	of	LEDs	in	your	LED	strip
#define	DATA_PIN	6					//	Data-In	(DI)	connecting	to	this	pin

//	For	four-wire	chipsets	with	a	Clock-In	(CI)	only
//#define	CLOCK_PIN	7				//	Clcok-In	(CI)	connecting	to	this	pin

//	Define	an	array	of	LEDs	to	keep	the	RGB	values	of	each	LED	
CRGB	leds[NUM_LEDS];

In	setup():

void	setup()	{
			//	For	3-wire	chipsets	without	Clock-In	(CI)
			FastLED.addLeds<NEOPIXEL,	DATA_PIN>(leds,	NUM_LEDS);		//	or	set	to	WS2812	or	WS2811
		
			//	For	4-wire	chipsets	with	a	Clock-In	(CI)
			//FastLED.addLeds<LPD8806,	DATA_PIN,	CLOCK_PIN>(leds,	NUM_LEDS);
}

You	can	then	play	with	the	color	in	loop():

//	To	switch	an	LED	Off,	set	the	color	to	Black	for	that	particular	LED	and	call	the	show()	function:
leds[8]	=	CRGB::Black;		//	Array	index	begins	at	0,	up	to	NUM_LEDs	-	1
																								//	Set	color	to	black	via	pre-defined	constant	CRGB::Black
FastLED.show();									//	Show	changes

//	Set	an	LED	to	a	specific	color
leds[8]	=	CRGB::Red;				//	Set	LED	8	to	red	via	pre-defined	constant	CRGB::Red
FastLED.show();									//	Show	changes
delay(1000);

//	You	can	set	each	of	the	RGB	components	individually
leds[18].r	=	255;					//	Set	red	component,	value	between	0	and	255
leds[18].g	=	125;					//	Set	green
leds[18].b	=	0;							//	Set	blue
FastLED.show();							//	Show	changes,	no	change	in	leds[8]
delay(1000);

//	Set	all	LEDs	to	pre-defined	constant	ForestGreen	(0x228B22)
for	(i	=	0;	i	<	NUM_LEDS;	++i)	{
			leds[i]	=	CRGB::ForestGreen;
}
FastLED.show();							//	Show	changes
delay(1000);

Run	and	study	all	the	other	examples.

7.		Motors

7.1		Motor	Ex	1:	DC	Motor	and	Transistor	(for	driving	larger	load)

Follow	"CIRC03	Spin	Motor	Spin"	@	http://www.oomlout.com/oom.php/products/ardx/circ-03.

Circuit	Diagram

Dissecting	the	Circuit

A	transistor	(P2N2222AG	NPN	BJT,	rated	at	40V	and	200mA	max)	(datasheet)	is	used	as	an	electronic	switch	in	the	above	circuit.	It	is	turned

http://www.oomlout.com/oom.php/products/ardx/circ-03
https://www.sparkfun.com/products/12852

ON	when	pin	9	(connected	to	the	base	(b)	of	transistor)	outputs	a	HIGH	(5V),	with	base	current	IB	=	(5V-0.8V)/330Ω	=	13mA;	and	voltage	drop

across	collector	(c)	and	emitter	(e)	of	0.2V.	It	is	OFF	when	pin	9	is	LOW	(0V).

A	transistor	is	needed	here	as	the	output	from	pin	9	(with	maximum	current	of	40mA)	is	not	sufficient	to	drive	the	DC	motor	directly.	But	only	a
small	amount	of	current	(2mA)	is	required	to	turn	on	the	transistor.

A	DC	motor	spins	at	a	rate	proportional	to	the	applied	voltage	(once	sufficient	voltage	is	applied)	at	no	load.	The	speed	decreases	when	load	is
applied.	The	current	is	also	proportional	to	the	torque.	(See	DC	Motor	Tutorials.)

DC	motors	have	various	specifications.	A	 toy	DC	motor	has	an	operating	voltage	range	of	1.5	 to	4.5V	and	a	no	 load	speed	of	23000	RPM
(@4.5VDC,	70mA)	(datasheet);	another	has	an	operating	voltage	range	of	1.0	to	3.0V	and	a	no	load	speed	of	6600	RPM	(@1.0V	DC,	110mA)
(datasheet).	Generally,	it	requires	around	100mA	and	cannot	be	supplied	via	output	pin	(max	of	40mA).	The	transistor	has	a	rating	of	200mA.

Practice

Connect	the	DC	motor	directly	to	5V.	Measure	the	no	load	current.

Set	pin	9	to	HIGH	(to	turn	on	the	transistor):

1.	 Using	a	 digital	multimeter,	measure	 the	 voltage	at	 pin	 9,	 the	 voltage	across	 the	base	and	emitter	VBE.	Compute	 the	base	 current	 IB
(through	the	base	resistor).

2.	 Measure	the	voltage	across	the	collector	and	emitter	VCE.

3.	 Measure	the	collector	current	IC.

7.2		Motor	Ex	2:	Servo	Motor

Follow	"CIRC04	Servo"	@	http://www.oomlout.com/oom.php/products/ardx/circ-04.

Dissecting	the	Circuit

A	servo	motor	(sample	datasheet)	is	a	rotary	actuator	that	allows	for	precise	control	of	angular	position,	velocity	and	acceleration.

8.		Sensors,	Actuators	and	Other	Devices

8.1		Shift	Register

Follow	"CIRC05	Shift	Register"	@	http://www.oomlout.com/oom.php/products/ardx/circ-05.

8.2		Piezo	Speaker

Follow	"CIRC06	Piezo	speaker"	@	http://www.oomlout.com/oom.php/products/ardx/circ-06.

8.3		Push	Button

Follow	"CIRC07	Push	Button"	@	http://www.oomlout.com/oom.php/products/ardx/circ-07.

8.4		Potentialmeter

Follow	"CIRC08	Potentialmeter"	@	http://www.oomlout.com/oom.php/products/ardx/circ-08.

Practice

Use	a	multimeter,	measure	the	resistance	across	the	entire	potentiometer.	(Mine	is	10	kΩ).

8.5		Photo-Resistor

Follow	"CIRC09	Photo-Resistor"	@	http://www.oomlout.com/oom.php/products/ardx/circ-09.

Practice

Use	a	multimeter,	measure	the	resistance	of	the	photo-resistor	at	darkness	(by	covering	the	surface)	and	at	full	brightness	(shine	light	on	it).
(Darkness:	60	kΩ;	brightness:	3	kΩ).

8.6		Temperature	Sensor

Follow	"CIRC10	Precision	Temperature	Sensor"	@	http://www.oomlout.com/oom.php/products/ardx/circ-10.

8.7		Relay	(for	large	load)

http://www.micromo.com/dc-motor-tutorials
https://www.sparkfun.com/products/retired/9608
https://www.sparkfun.com/products/11696
http://www.oomlout.com/oom.php/products/ardx/circ-04
https://www.sparkfun.com/products/9347
http://www.oomlout.com/oom.php/products/ardx/circ-05
http://www.oomlout.com/oom.php/products/ardx/circ-06
http://www.oomlout.com/oom.php/products/ardx/circ-07
http://www.oomlout.com/oom.php/products/ardx/circ-08
http://www.oomlout.com/oom.php/products/ardx/circ-09
http://www.oomlout.com/oom.php/products/ardx/circ-10

Follow	"CIRC11	Larger	Load	Relay"	@	http://www.oomlout.com/oom.php/products/ardx/circ-11.

8.8		Real-Time	Clock	(RTC)	Module

Reference:

1.	 "DS1307	Real	Time	Clock	Breakout	Board	Kit"	@	https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/overview.

2.	 "RTCLib"	@	https://github.com/adafruit/RTClib.

3.	 "DS1307"	Data	Sheet	@	https://datasheets.maximintegrated.com/en/ds/DS1307.pdf.

Arduino	 has	 a	 built-in	 timer	 for	 time	 keeping,	 which	 you	 can	 read	 via	 function	 millis(),	 which	 returns	 the	 number	 of	 milliseconds	 (in
unsigned	long)	since	the	current	program	is	launched.	However,	it	is	reset	to	zero,	when	the	power	is	turned	off	and	on,	or	the	program	is
reset.

For	consistent	timekeeping,	we	could	use	a	Real-Time	Clock	(RTC)	module	(such	as	DS1307),	that	has	a	small	lithium	battery	(3V	CR1225	or
CR1220)	to	keep	the	timer	running	(for	up	to	5	years)	even	if	the	Arduino	is	powered	off.	The	RTC	chip	is	a	specialized	chip	that	just	keeps
track	of	time.	It	can	count	leap-years	and	knows	how	many	days	are	in	a	month,	but	it	does	not	handle	daylight	savings	Time.

RTC	DS1307	can	be	connected	to	Arduino	easily.	There	are	five	wires:

1.	 5V	(Primary	Power	Supply):	Used	to	power	the	RTC	chip	for	querying	time.	When	the	5V	is	absent,	the	battery	is	still	powering	its	internal
timer.	Connect	to	Arduino's	5V	pin.

2.	 GND	(Ground):	Connect	to	Arduino's	GND	pin.

3.	 SCL	(Serial	Clock	Input):	Connect	to	Arduino	UNO's	A4;	or	Arduino	Mega's	digital	21.

4.	 SDA	(Serial	Data	Input/Output):	Connect	to	Arduino	UNO's	A5;	or	Arduino	Mega's	digital	20.

5.	 SQW	(Square	Wave):	Optional	square	wave	output.	Most	people	don't	use	it.

The	RTC	is	an	i2c	device,	which	uses	2	wires	to	communicate	with	Arduino	UNO	(SCL	to	A4,	SDA	to	A5),	for	setting	the	time	and	retrieving	it.
It	takes	up	2	of	the	6	analog	inputs	pins.

RTClib	Arduino	Library

Download	 the	 "RTCLib"	 from	 https://github.com/adafruit/RTClib,	 and	 unzip	 into	 Arduino	 IDE's	 library	 folder.	 Read	 the	 tutorial	 @
https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/overview.

Example

Run	and	study	example	"ds1307",	touched	up	as	below:

#include	<Wire.h>					//	Built-in	library	for	i2c	communication
#include	"RTClib.h"			//	RCTLib

RTC_DS1307	rtc;				//	Declare	an	instance

void	setup	()	{
			Serial.begin(57600);		//	Enable	serial	for	debugging
			if	(!rtc.begin())	{
						Serial.println("Couldn't	find	RTC");
						while(1);
			}

			if	(!rtc.isrunning())	{
						Serial.println("RTC	is	NOT	running!");
						//	Sets	the	RTC	to	the	datetime	this	sketch	was	compiled	using	the	computer	time
						rtc.adjust(DateTime(F(__DATE__),	F(__TIME__)));
						//	Or,	sets	the	RTC	with	an	explicit	year,	month,	day,	hour,	minute,	second
						//rtc.adjust(DateTime(2014,	1,	21,	3,	0,	0));
			}
}

void	loop	()	{
			//	Read	datetime

http://www.oomlout.com/oom.php/products/ardx/circ-11
https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/overview
https://github.com/adafruit/RTClib
https://datasheets.maximintegrated.com/en/ds/DS1307.pdf
https://github.com/adafruit/RTClib
https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/overview

			DateTime	now	=	rtc.now();
			
			//	Print	time
			Serial.print(now.year(),	DEC);
			Serial.print('/');
			Serial.print(now.month(),	DEC);
			Serial.print('/');
			Serial.print(now.day(),	DEC);
			Serial.print("	");
			Serial.print(now.hour(),	DEC);
			Serial.print(':');
			Serial.print(now.minute(),	DEC);
			Serial.print(':');
			Serial.print(now.second(),	DEC);
			Serial.println();
				
			delay(2000);
}

rtc.begin():	to	establish	communication.	Return	false	if	RTC	is	not	found.

rtc.isrunning():	Return	false	if	RTC	is	not	running.

rtc.adjust(DateTime(__DATE__,	__TIME__)):	Set	the	RTC's	time	to	your	computer's	time	when	the	sketch	was	compiled.	This	is
needed	if	you	took	out	the	RTC's	battery,	or	re-synchronize	the	time.	This	is	NOT	needed	if	you	power	down	the	Arduino	Board,	as	RTC's
battery	is	still	powering	the	RTC's	timer.

DateTime	now	=	rtc.now():	Return	the	RTC's	time	in	a	DateTime	object.

now.year(),	 now.month(),	 now.day(),	 now.hour(),	 now.minute(),	 now.second(),	 now.dayOfTheWeek():	 Get	 the
DateTime	object's	components.

8.9		Ultrasonic	Ranging	Sensor	HC-SR04

Reference:

1.	 "Ultrasonic	Sensor	HC-SR04	and	Arduino	Tutorial"	@	http://howtomechatronics.com/tutorials/arduino/ultrasonic-sensor-hc-sr04/.

2.	 Arduino-HC-SR04-library	@	https://github.com/bbkbarbar/Arduino-HC-SR04-library.

3.	 "HC-SR04"	datasheet	@	http://www.micropik.com/PDF/HCSR04.pdf.

"A	proximity	sensor	is	a	sensor	able	to	detect	the	presence	of	nearby	objects	without	any	physical	contact.	A	proximity	sensor	often	emits	an
electromagnetic	field	or	a	beam	of	electromagnetic	radiation	(infrared,	for	instance),	and	looks	for	changes	in	the	field	or	return	signal."

HC-SR04	ultrasonic	distance	measurement	sensor	is	a	low-cost	sensor	that	supports	non-contact	distance	measurement	from	2cm	to	400cm
(4m)	with	a	ranging	accuracy	of	up	to	3mm.	Take	note	the	there	is	a	minimum	range	of	2cm	(i.e.,	you	cannot	cover	the	sensor,	which	blocks
the	Ultrasonic	wave	path).	The	measuring	angle	is	15	degrees.

Each	HC-SR04	module	has	an	ultrasonic	transmitter,	a	receiver	and	a	control	circuit.	It	emits	an	ultrasound	at	40KHz,	which	travels	through	the
air	and	bounces	back	 if	 there	 is	an	object	or	obstacle	on	 its	path.	You	can	calculate	 the	distance	 from	the	 travel	 time	and	 the	speed	of	 the
sound	(340	m/s	=	0.034	cm/µs),	as	follows:

speed	=	distance	/	time	
distance	(cm)	=	0.034	(cm/µs)	*	time	(µs)		/	2	=	0.017	*	timeInµs

HC-SR04	module	 has	 four	 pins:	 VCC	 (Power),	 TRIG	 (Trigger),	 ECHO	 (Receive),	 and	GND	 (Ground).	Connect	 the	VCC	and	GND	pins	 to
Arduino's	5V	and	GND.	Connect	TRIG	and	ECHO	to	any	Arduino's	digital	I/O	pins.

In	order	to	generate	the	ultrasound	signal	you	need	to	set	the	TRIG	HIGH	for	10	µs.	This	will	trigger	an	8-cycle	sonic	burst	which	will	travel	at
the	sound	speed	(340	m/s)	and	bounce	back	to	the	ECHO	pin.	The	ECHO	pin	will	maintain	HIGH	for	the	duration	(in	microseconds)	that	sound

http://howtomechatronics.com/tutorials/arduino/ultrasonic-sensor-hc-sr04/
https://github.com/bbkbarbar/Arduino-HC-SR04-library
http://www.micropik.com/PDF/HCSR04.pdf

wave	traveled.

Example	of	Raw	Source	Code

/*
	*	Using	HC-SR04	Ultrasonic	Ranging	Sensor
	*	Measurement	Range	is	2cm	to	400cm	(4m),	15	degree	angle.
	*/
#define	RANGING_TRIG_PIN	4				//	TRIG	pin	to	any	Arduino's	digital	pin
#define	RANGING_ECHO_PIN	3				//	ECHO	pin	to	any	Arduino's	digital	pin

unsigned	long	distanceInCm;			//	in	cm

void	setup()	{
			Serial.begin(57600);

			//	Set	up	Ultrasonic	Ranging	Sensor
			pinMode(RANGING_TRIG_PIN,	OUTPUT);
			pinMode(RANGING_ECHO_PIN,	INPUT);
}

void	loop()	{
			//	Get	distance	from	ranging	sensor
			distanceInCm	=	getDistanceInCm();
			//	Print	for	debugging
			Serial.print(distanceInCm);
			Serial.println("cm");
			delay(1000);

			distanceInCm	=	getAverageDistanceInCm();
			//	Print	for	debugging
			Serial.print(distanceInCm);
			Serial.println("cm");
			delay(1000);

			distanceInCm	=	getAccurateDistanceInCm();
			//	Print	for	debugging
			Serial.print(distanceInCm);
			Serial.println("cm");
			delay(1000);
}

/*
	*	Get	distance	in	cm	via	the	ranging	sensor	HC-SR04
	*/
unsigned	long	getDistanceInCm()	{
			//	Clear	trigger	signal	for	2	usec
			digitalWrite(RANGING_TRIG_PIN,	LOW);
			delayMicroseconds(2);
			//	Set	Trigger	pin	HIGH	for	10	usec
			digitalWrite(RANGING_TRIG_PIN,	HIGH);
			delayMicroseconds(10);
			digitalWrite(RANGING_TRIG_PIN,	LOW);
			//	Read	Echo	pin	HIGH	duration	in	usec,	convert	to	cm
			//	The	speed	of	sound	is	340	m/s	=	0.034	cm/us
			//	The	ping	travels	out	and	back,	need	to	divide	by	2.
			return	pulseIn(RANGING_ECHO_PIN,	HIGH)	*	0.017;
}

/*
	*	Read	distance	in	cm	using	the	ranging	sensor	HC-SR04
	*	Return	the	average	of	3	readings
	*/
unsigned	long	getAverageDistanceInCm()	{
			//	Get	the	average	of	3	readings
			unsigned	long	distances[3];
			for	(uint8_t	i	=	0;	i	<	3;	++i)	{
						distances[i]	=	getDistanceInCm();
			}
			return	(distances[0]	+	distances[1]	+	distances[2])	/	3;
}

/*
	*	Read	distance	in	cm	using	the	ranging	sensor	HC-SR04
	*	Take	5	readings,	discard	max	and	min	and	return	the	average	of	remaining	three
	*/
unsigned	long	getAccurateDistanceInCm()	{
			unsigned	long	distances[5];
			for	(uint8_t	i	=	0;	i	<	5;	++i)	{
						distances[i]	=	getDistanceInCm();

			}
			unsigned	long	max	=	distances[0];
			unsigned	long	min	=	distances[0];
			for	(int	i	=	1;	i	<	5;	++i)	{
						if	(distances[i]	>	max)	max	=	distances[i];
						if	(distances[i]	<	min)	min	=	distances[i];
			}
			return	(distances[0]	+	distances[1]	+	distances[2]	+	distances[3]	+	distances[4]	-	max	-	min)	/	3;
}

Take	note	that	the	minimum	range	is	2cm	(you	cannot	cover	the	sensor,	which	blocks	the	wave	path).	Hence,	readings	of	0cm	is	invalid!

Debugging	Tips

Use	a	multimeter	to	measure	the	voltage	across	the	HC-SR04	VCC	and	GND.	It	ought	to	be	5V.	Otherwise,	some	other	components	(such	as

LED	strips)	might	have	pull	down	the	voltage.

Arduino	Library

You	can	simplify	your	programming	using	an	library.	There	are	a	few	HC-SR04	library	available:

Arduino-HC-SR04-library	@	https://github.com/bbkbarbar/Arduino-HC-SR04-library.

Example	of	Using	Arduino-HC-SR04-Library

#include	"hcsr04.h"			//	Using	"Arduino-HC-SR04-library"
#define	RANGING_TRIG_PIN		4			//	TRIG	pin	to	any	Arduino's	digital	pin
#define	RANGING_ECHO_PIN		3			//	ECHO	pin	to	any	Arduino's	digital	pin

HCSR04	sensor;								//	Declare	an	instance	of	HC-SR04	sensor
unsigned	short	distance;		//	measured	distance

void	setup()	{
			sensor.init(RANGING_TRIG_PIN,	RANGING_ECHO_PIN);		//	init
}

void	loop(){
			Serial.begin(57600);		//	Use	serial	port	for	display

			//	One	measurement
			distance	=	sensor.readDisctanceInMm();
			Serial.print("distance	(instantaneous):	");
			Serial.print(distance);
			Serial.println("mm");

			//	Average	of	n	measurements
			distance	=	sensor.readAvgDisctanceInMm(2);
			Serial.print("distance	(average	of	two):	");
			Serial.print(distance);
			Serial.println("mm");

			//	5	measurements,	but	discard	the	max	and	min
			distance	=	sensor.readAccurateDisctanceInMm();
			Serial.print("distance	(accurate):	");
			Serial.print(distance);
			Serial.println("mm");
		
			delay(1000);
}

8.10		Bluetooth	Shields

Reference:

1.	 Using	the	BlueSMiRF	@	https://learn.sparkfun.com/tutorials/using-the-bluesmirf.

2.	 Bluetooth	Serial	Terminal	@	https://www.microsoft.com/en-us/store/p/bluetooth-serial-terminal/9wzdncrdfst8.

3.	 Arduino	 and	HC-05	Bluetooth	Module	 Tutorial	@	https://howtomechatronics.com/tutorials/arduino/arduino-and-hc-05-bluetooth-module-
tutorial/.

4.	 Arduino	Bluetooth	Basic	Tutorial	@	https://create.arduino.cc/projecthub/user206876468/arduino-bluetooth-basic-tutorial-d8b737.

	

There	are	many	Bluetooth	Shields	available	for	Arduino.	I	have	tried	the	followings:

HC-05	6-Pin	Bluetooth	RF	Receiver	Transceiver	Module

https://github.com/bbkbarbar/Arduino-HC-SR04-library
https://learn.sparkfun.com/tutorials/using-the-bluesmirf
https://www.microsoft.com/en-us/store/p/bluetooth-serial-terminal/9wzdncrdfst8
https://howtomechatronics.com/tutorials/arduino/arduino-and-hc-05-bluetooth-module-tutorial/
https://create.arduino.cc/projecthub/user206876468/arduino-bluetooth-basic-tutorial-d8b737

The	HC-05	is	a	class	2	Bluetooth	module	(10m	range).	It	is	pre-configured	as	a	slave	Bluetooth	device	with	Baud	rate	of	38400	(older	version
at	9600),	 8	data	bits,	No	Parity,	 1	 stop	bit	 (8N1).	Once	 it	 is	paired	 to	a	master	Bluetooth	device	such	as	PC,	 smart	 phones	and	 tablet,	 its
operation	becomes	transparent	to	the	user.

HC-05	can	be	powered	by	3.6V	to	6V.	Hence,	 it	can	be	powered	by	Arduino's	5V	supply.	However,	the	level	of	RX/TX	is	3.3V,	which	is	not
compatible	with	Arduino's	digital	output	of	5V.	For	RX	input,	you	need	to	use	a	voltage	divider	(formed	by	a	10KΩ	and	a	20KΩ	resistors)	to
bring	5V	down	to	3.3V.	But	the	TX	output	of	3.3V	can	drive	Arduino's	digital	input	pin	directly.

RN-41/RN-42	Sparkfun	BlueSMiRF	Gold/Silver	Bluetooth	Module

RN-41	is	a	class	1	device	with	range	of	100m;	while	RN-42	is	a	class	2	device	with	range	of	10m.	They	can	be	powered	by	3.3V	to	6V,	and
designed	to	work	with	3.3V	and	5V	systems.	Hence,	they	can	be	connected	directly	to	Arduino	(without	Voltage	Level	Shifter).	The	baud	rate	is
2400	to	115200bps.	The	default	baud	rate	is	115200,	8	data	bits,	no	parity,	1	stop	bit	(8N1).

Data	Mode	vs.	Command	Mode

Bluetooth	module	operates	in	two	modes:

1.	 Command	Mode:	used	to	configure	the	Bluetooth	module,	such	as	device	name,	baud	rate,	Pin	Code,	etc.	The	HC-05	Bluetooth	Module
has	a	switch	to	enter	the	command	mode.

2.	 Data	Mode:	for	data	transfer	between	the	Bluetooth	module	and	the	Arduino	controller.	The	Bluetooth	module	acts	as	a	transparent	data
gateway.	Any	data	received	over	Bluetooth	connection	is	routed	to	the	TX	pin.	Any	data	sent	to	RX	pin	is	piped	out	over	Bluetooth.

Connection

Instead	of	connecting	 the	Bluetooth	 to	 the	Arduino's	sore	hardware	Serial	 (Pins	0	and	1),	we	shall	use	SoftwareSerial	and	connect	 the
bluetooth's	RX	and	TX	pins	 to	any	of	 the	Arduino’s	 free	digital	pins.	This	will	help	 to	avoid	bus	contention	and	will	make	sure	 the	Bluetooth
doesn't	receive	any	spurious	data	during	a	sketch	upload.	In	our	test	program,	we	choose	pin	2	for	SoftwareSerial's	RX	and	pin	3	for	TX.

1.	 Connect	Bluetooth's	RX	to	Arduino's	TX.

For	HC-05,	the	bluetooth's	RX	is	operating	at	3.3V,	you	need	a	voltage	divider	(voltage	level	shifter).	You	can	use	a	1KΩ	and	a	2KΩ
resistors	to	form	a	voltage	divider	to	bring	5V	down	to	3.3V.

For	RN-41,	no	voltage	level	shifter	is	need	as	it	can	operate	on	3.3V	and	5V.

2.	 Connect	the	Bluetooth's	TX	to	Arduino's	RX.	No	voltage	divider	is	needed,	as	3.3V	is	able	to	drive	Arduino's	5V	digital	pin.

3.	 Connect	 the	Bluetooth's	Vcc/GND	to	Arduino's	5V/GND	(provided	the	bluetooth	can	be	powered	by	5V,	otherwise,	use	Arduino's	3.3V
output	supply).

4.	 Ignore	the	other	pins.

Take	note	that	you	need	to	connect	the	Bluetooth's	RX	to	Arduino's	TX,	and	vice	versa.

Arduino	Test	Program

The	following	program	turns	on/off	Pin-13's	built-in	LED	via	command	sent	through	a	Bluetooth	module.	Send	'0'	to	turn	off	and	'1'	to	turn
on.

/*
	*	Turn	on/off	LED	via	command	sent	through	a	Bluetooth	module
	*	Send	'0'	to	turn	off	and	'1'	to	turn	on
	*/
//	The	default	Serial	uses	pins	0	and	1
//	Use	SoftwareSerial	to	switch	the	TX/RX	pins	and	leave	pins	0	and	1	for	debugging
//	Use	built-in	SoftwareSerial	header	@	https://www.arduino.cc/en/Reference/SoftwareSerial
#include	<SoftwareSerial.h>

//	Connect	the	Bluetooth's	RX	to	Arduino's	TX,	Bluetooth's	TX	to	Arduino's	RX
#define	BT_RX_PIN	2				//	Connect	to	Bluetooth's	TX	pin
#define	BT_TX_PIN	3				//	Connect	to	Bluetooth's	RX	pin
//	Setup	SoftwareSerial	(RX,	TX)
SoftwareSerial	bluetooth(BT_RX_PIN,	BT_TX_PIN);

#define	LED_PIN	13					//	Use	Pin	13's	built-in	LED
byte	ledState	=	LOW;			//	HIGH	or	LOW
char	btCommandChar;				//	Bluetooth	command	character

void	setup()	{
			//	Set	up	bluetooth	(choose	your	device)
			bluetooth.begin(115200);			//	default	baud	rate	for	RN-41/RN-42
			//bluetooth.begin(38400);		//	default	baud	rate	for	HC-05	(older	version	at	9600)

			//	Set	up	LED	and	Test	LED	by	blinking	thrice
			pinMode(LED_PIN,	OUTPUT);
			for	(int	i	=	0;	i	<	3;	++i)	{
						ledState	=	LOW;
						digitalWrite(LED_PIN,	ledState);
						delay(1000);
						ledState	=	HIGH;
						digitalWrite(LED_PIN,	ledState);
						delay(1000);
			}

			//	Start	the	serial	communications	for	debugging
			Serial.begin(9600);

			Serial.println("LED	ON	and	READY");
}

void	loop()	{
			//	Read	bluetooth	command,	if	available
			if	(bluetooth.available())	{			//	Check	if	the	bluetooth	sends	any	characters
						btCommandChar	=	(char)bluetooth.read();

						if	(btCommandChar	==	'0')	{		//	Turn	off	LED
									if	(ledState	==	HIGH)	{
												ledState	=	LOW;
												digitalWrite(LED_PIN,	ledState);
												Serial.println("LED	OFF");		//	Debugging
									}
						}	else	if	(btCommandChar	==	'1')	{		//	Turn	on	LED
									if	(ledState	==	LOW)	{
												ledState	=	HIGH;
												digitalWrite(LED_PIN,	ledState);
												Serial.println("LED	ON");		//	Debugging
									}
						}	else	{
									Serial.print("error:	unknown	command	");		//	Debugging
									Serial.println(btCommandChar);
						}
			}
			delay(1000);
}

Testing	on	PC	using	"Bluetooth	Serial	Terminal"

There	are	many	free	Bluetooth	Terminal	available.	I	used	the	Bluetooth	Serial	Terminal	(@	https://www.microsoft.com/en-us/store/p/bluetooth-
serial-terminal/9wzdncrdfst8)	which	has	PC	and	Mobile	version	to	test	the	bluetooth	module.

1.	 Enable	Bluetooth	on	PC:	(Windows	10)	Bluetooth	&	Other	Devices	⇒	Bluetooth	ON.
2.	 Pair	the	bluetooth	device:	(Windows	10)	Bluetooth	&	Other	Devices	⇒	"Firefly	9AC4"	(for	RN-41),	HC-05	(for	HC-05)	⇒	Connect	⇒	Enter

password	(default	"1234"	or	"0000").

3.	 Upload	the	Sketch.

4.	 Start	"Bluetooth	Serial	Terminal"	(or	any	Bluetooth	Terminal):	Connect.

5.	 In	"Transmit",	enter	"0"	and	"Send".	Observe	the	the	LED	is	turned	off.

6.	 In	"Transmit",	enter	"1"	and	"Send".	Observe	the	the	LED	is	turned	on.

Working	with	Android

[TODO]

RN-41	Bluetooth	Module's	Command	Mode

You	can	use	the	following	sketch	to	test	the	"command	mode"	of	RN-41	Bluetooth	module,	via	passing	thru	all	data	between	"Arduino	Serial
Monitor"	and	"Bluetooth	Module".

/*
	*	Test	Bluetooth	module	via	passing	thru	all	data	between	"Arduino	Serial	Monitor"
	*	and	"Bluetooth	Module".
	*/
//	The	default	Serial	uses	pins	0	and	1
//	Use	SoftwareSerial	to	switch	the	TX/RX	pins	and	leave	pins	0	and	1	for	debugging
//	Use	built-in	SoftwareSerial	header	@	https://www.arduino.cc/en/Reference/SoftwareSerial
#include	<SoftwareSerial.h>

//	Connect	the	Bluetooth's	RX	to	Arduino's	TX,	Bluetooth's	TX	to	Arduino's	RX
#define	BT_RX_PIN	2				//	Connect	to	Bluetooth's	TX	pin
#define	BT_TX_PIN	3				//	Connect	to	Bluetooth's	RX	pin
//	Setup	SoftwareSerial	(RX,	TX)
SoftwareSerial	bluetooth(BT_RX_PIN,	BT_TX_PIN);

void	setup()	{
			bluetooth.begin(115200);		//	default	for	RN-41/42

			//	==	For	RN-41/42	only	==
			//	Change	the	baud	rate	thru	the	command	mode
			//	115200	can	be	too	fast	at	times	for	SoftwareSerial	to	relay	the	data	reliably
			bluetooth.print("$");		//	Send	"$$$"	to	enter	command	mode
			bluetooth.print("$");
			bluetooth.print("$");
			delay(100);		//	Short	delay,	wait	for	the	Bluetooth	to	send	back	"CMD"
			bluetooth.println("U,9600,N");		//	Temporarily	Change	the	baud	rate	to	9600,	no	parity

https://www.microsoft.com/en-us/store/p/bluetooth-serial-terminal/9wzdncrdfst8

			bluetooth.begin(9600);										//	Start	bluetooth	serial	at	9600

			//	Start	the	serial	communications	for	debugging
			Serial.begin(9600);
			Serial.println("READY");
}

void	loop()	{
			//	Pass	all	data	from	Arduino	Serial	Monitor	to	Bluetooth
			if	(Serial.available())	{
						bluetooth.print((char)Serial.read());
			}
			//	Pass	all	data	from	Bluetooth	to	Arduino	Serial	Monitor
			if	(bluetooth.available())	{
						Serial.print((char)bluetooth.read());		
			}
}

1.	 Upload	the	sketch.

2.	 Open	Arduino's	"Serial	Monitor".	Set	Baud	rate	to	9600.	Choose	"No	Line	Ending".

3.	 Enter	"$$$"	⇒	Send.	You	shall	receive	"CMD"
4.	 Choose	"Newline"	for	the	Serial	Monitor.

5.	 Enter	"D"	⇒	Send.	You	shall	receive	the	"Settings"	(such	as	BTName,	Baud	rate,	Mode,	Pin	Code,	etc.).
6.	 Enter	"E"	⇒	Send.	You	shall	receive	the	"Advanced	Settings".

HC-05	Bluetooth	Module's	Command	Mode

To	enter	HC-05	command	mode,	you	need	to	pull	pin	34	to	HIGH	(at	3.3V).	You	can	connect	HC-05's	pin	34	to	Arduino's	pin	9	(via	a	voltage
divider)	and	set	it	to	HIGH	to	enter	the	command	mode.	You	can	also	PUSH	the	button	while	sending	the	AT	command	(the	button	is	internally
connected	to	pin	34).

In	the	command	mode,	HC-05	can	process	AT	commands.	For	examples,

AT	⇒	OK
AT+VERSION	⇒	Display	version
AT+NAME=MYBTNAME	⇒	Set	device	name
AT+PSWD	⇒	Display	password
AT+UART	⇒	Display	UART	settings
AT+UART=115200,1,0	⇒	Set	UART	baudrate	=	115200,	1	stop	bit,	no	parity

Again,	we	shall	use	the	following	passthru	program	to	test	the	command	mode:

/*
	*	Test	Bluetooth	module	via	passing	thru	all	data	between	"Arduino	Serial	Monitor"
	*	and	"Bluetooth	Module".
	*/
//	The	default	Serial	uses	pins	0	and	1
//	Use	SoftwareSerial	to	switch	the	TX/RX	pins	and	leave	pins	0	and	1	for	debugging
//	Use	built-in	SoftwareSerial	header	@	https://www.arduino.cc/en/Reference/SoftwareSerial
#include	<SoftwareSerial.h>

//	Connect	the	Bluetooth's	RX	to	Arduino's	TX,	Bluetooth's	TX	to	Arduino's	RX
#define	BT_RX_PIN	2				//	Connect	to	Bluetooth's	TX	pin
#define	BT_TX_PIN	3				//	Connect	to	Bluetooth's	RX	pin
//	Setup	SoftwareSerial	(RX,	TX)
SoftwareSerial	bluetooth(BT_RX_PIN,	BT_TX_PIN);

void	setup()	{
			bluetooth.begin(38400);		//	default	for	HC-05

			//	Start	the	serial	communications	for	debugging
			Serial.begin(9600);
			Serial.println("READY");
}

void	loop()	{
			//	Pass	all	data	from	Arduino	Serial	Monitor	to	Bluetooth
			if	(Serial.available())	{
						bluetooth.print((char)Serial.read());
			}
			//	Pass	all	data	from	Bluetooth	to	Arduino	Serial	Monitor
			if	(bluetooth.available())	{
						Serial.print((char)bluetooth.read());		
			}
}

1.	 Upload	the	sketch.

2.	 Open	Arduino's	"Serial	Monitor".	Set	Baudrate	to	9600.	Choose	"Both	NL	and	CR".

3.	 Enter	"AT",	Push	the	button	and	"Send"	⇒	OK
4.	 Enter	"AT+VERSION",	Push	the	button	and	"Send"	⇒	VERSION:2.0-20161226	⇒	OK
5.	 Enter	"AT+UART",	Push	the	button	and	"Send"	⇒	+UART:38400,0,0	⇒	OK

8.11		Wifi	Shield

[TODO]

8.12		MP3	Shield

[TODO]

9.		Arduino	Mega	2560

Arduino	UNO	has	its	limitations	(e.g.,	it	can	drive	about	300-400	LED	pixels	due	to	its	2KB	of	SRAM;	it	has	limited	number	of	I/O	pins).	Many	of
your	project	may	require	a	more	powerful	Arduino	Mega	2560	(which	obsoleted	the	Arduino	Mega).

Arduino	Mega	2560	has:

54	digital	 I/O	pins,	of	which	15	can	be	used	as	PWM	outputs	(pins	2-13,	44-46).	Each	pin	could	provide	20mA	current.	(Compared	with
Arduino	UNO:	14	digital	pins,	6	PWMs.)	
Use	 function	 pinMode(0-53,	 INPUT|OUTPUT)	 to	 configure	 the	 pin	 for	 input	 or	 output;	 and	 digitalRead(0-53)	 or
digitalWrite(0-53,	HIGH|LOW)	to	read	or	write.
For	PWM	pins,	you	can	use	function	analogWrite(2-13|44-46,	dutyCycle)	with	duty	cycle	of	between	0	(off)	to	255	(on)	to	output
PWM	signal.

16	analog	input	pins.	(Compared	with	Arduino	UNO:	6)
Use	 function	 pinMode(A0-A13,	 INPUT)	 (optional	 but	 nice	 to	 have)	 and	 analogRead(A0-A13)	 to	 read	 the	 10-bit	 analog	 input
[0,1023].
These	analog	input	pins	can	also	be	used	for	digital	input/output	like	the	digital	I/O	pins,	with	pin	number	for	A0-A13.

4	Serial	ports	(USART)	(Compared	with	Arduino	UNO:	1).

ATmega2560	microcontroller	@	16MHz,	with	256KB	of	Flash	memory	for	program,	8KB	of	SRAM	for	data,	and	4KB	of	EEPROM	for	non-
volatile	data.

Arduino	IDE

Arduino	IDE	is	applicable	to	Arduino	Mega.

From	"Tools"	⇒	"Board"	⇒	Select	"Arduino/Genuino	Mega	or	Mega	2560".
Open	"File"	⇒	"Examples"	⇒	"01.basics"	⇒	"Blink",	and	run.	Observe	the	orange	LED	attached	to	digital	pin	13.

10.		More	on	Arduino

10.1		Microcontroller

Arduino	UNO	uses	ATmega328P	microcontroller,	with	these	features:

Low-power	CMOS	8-bit	microcontroller	based	on	the	AVR	enhanced	RISC	architecture.

Advanced	RISC	Architecture:

131	instructions,	most	single-clock-cycle	execution.

32x8	general	purpose	registers.

Up	to	20	MIPS	throughput	at	20MHz.

Memory

32	KBytes	Flash	for	program	with	10,000	write/erase	cycles.

1	KBytes	EEPROM	with	100,000	write/erase	cycles.

2	KBytes	SRAM

Peripheral:

Six	PWM	channels

6-channel	10-bit	ADC

One	programmable	Serial	USART

Two	Master/Slave	SPI	Serial	Interface

One	Byte-oriented	2-wire	Series	Interface	(I2C	compatible)

Two	8-bit	Timer/Counter	with	separate	prescaler	and	compare	mode

One	16-bit	Timer/Counter	with	separate	prescalar,	compare	mode	and	capture	mode

Interrupt	and	wake-up	on	pin	change

Operating	Voltage:	1.8V	to	5.5V

Power	Consumption	Active	Mode	@	1MHz,	1.8V,	25°C:	0.2mA

Arduino	Mega2560	uses	ATmega2560	microcontroller.

8-bit	microcontroller.

[TODO]

10.2		Memory

Types	of	Memory

There	are	three	pools	of	memory	in	Arduino	board:

1.	 Flash	Memory:	for	storing	the	program	(i.e.,	program	space)

2.	 SRAM	(Static	RAM):	for	storing	program	data	and	variables.

3.	 EEPROM	(Electrical	Erasable	Programmable	Read-Only	Memory):	for	storing	long-term	data.

Flash	and	EEPROM	are	non-volatile,	i.e.,	the	data	stored	persists	even	if	the	power	is	turned	off.	SRAM	is	volatile,	i.e.,	the	data	stored	is	lost
when	the	power	is	turned	off.

Arduino	UNO	(ATmega328)	has:	32KB	of	Flash	(about	0.5KB	is	used	for	the	bootloader),	2KB	of	SRAM	and	1KB	of	EEPROM.

Arduino	Mega2560	(ATmega2560)	has:	256KB	of	Flash	(about	8K	is	used	for	the	bootloader),	8KB	of	SRAM	and	4KB	of	EEPROM.

Take	note	that	SRAM	is	very	limited	in	Arduino	UNO.	For	example,	each	LED	in	a	LED	strip	requires	3	bytes	of	SRAM,	2KB	of	SRAM	is	only
capable	of	support	682	LEDs,	even	if	all	the	SRAM	are	used.	If	you	run	out	of	SRAM,	your	program	appears	to	be	loaded	successfully,	but	not
run	or	run	strangely.	To	conserve	SRAM:

Use	smaller	data	type,	e.g.,	an	int	takes	two	bytes,	but	a	byte	or	uint8_t	takes	only	one	byte.

If	you	don't	need	to	modify	the	data,	store	them	in	flash.

Programming	EEPROM

EEPROM.length():	return	total	number	of	bytes	of	EEPROM.

EEPROM.write(address,	value):	write	a	byte	with	value	of	0	 to	255	 to	 the	EEPROM	at	address.	For	example,	 to	 initialize	and
clear	the	EEPROM:

for	(int	i	=	0	;	i	<	EEPROM.length()	;	i++)	{
			EEPROM.write(i,	0);		//	write	0	to	all	the	addresses
}

An	EEPROM	write	takes	3.3ms	to	complete.	The	EEPROM	memory	has	a	specified	life	of	100,000	write/erase	cycles,	so	you	may	need	to
be	careful	about	how	often	you	write	to	it.

EEPROM.read(address):	read	the	value	(in	byte)	from	the	EEPROM	address.

EEPROM.put(address,	data):	write	any	data	 type	or	object	 (struct)	 to	 the	EEPROM	starting	 from	address.	The	data	 could	be
multi-byte,	you	can	use	sizeof(type)	to	check	the	size	of	data	type	in	bytes.

EEPROM.update(address,	data):	Similar	to	EEPROM.put(),	but	does	not	rewrite	the	value	if	it	didn't	change	(Recall	that	EEPROM
has	a	certain	write/erase	life).

EEPROM.get(address,	data):	read	any	data	type	or	object	from	EEPROM	starting	from	address	into	data.

10.3		Delay	and	Timer

[TODO]

10.4		Serial	Communication

All	Arduino	board	has	at	least	one	serial	port	(aka	UART	or	USART).	It	communicates	on	digital	pin	0	(RX)	and	pin	1	(TX),	as	well	as	with	the
computer	via	USB	(via	USB-to-Serial	adaptor).	This	serial	port	is	represented	by	the	Serial	object.	If	you	started	serial,	you	cannot	use	pins	0
and	1.	You	can	use	Arduino	IDE's	Serial	Monitor	to	communicate	with	Arduino	board.

The	Arduino	Mega2560	 has	 three	 additional	 serial	 ports:	Serial1	 on	 pins	 18	 (TX)	 and	 19	 (RX),	Serial2	 on	 pins	 16	 (TX)	 and	 17	 (RX),
Serial3	on	pins	14	(TX)	and	15	(RX).	There	are	NOT	connected	to	the	built-in	USB-to-Serial	adaptor,	and	you	need	an	additional	USB-to-
Serial	adaptor.

To	 use	 serial	 port,	 call	 Serial.begin(baudRate)	 or	 Serial.begin(baudRate,	 config)	 to	 set	 its	 speed	 and	 configuration	 (data,
parity,	stop	bits).	For	example,

void	setup()	{
			//	open	serial	port,	set	baud	rate	to	57600
			Serial.begin(57600);
			//	Arduino	board	writes	to	computer	via	serial	port
			Serial.println("Serial	port	started	at	baud	rate	of	57600");
}

The	Serial's	functions	are:

Serial.begin(baudRate,	[config]):	setup	serial	communication.

Serial.end():	Disable	serial	communication.	Pins	RX	and	TX	can	be	used	for	general	input/output.

Serial.print(value,	[format])	 and	Serial.println(value,	[format]):	Prints	data	 to	 the	serial	port	as	human-readable
ASCII	text,	with	an	optional	format.	Serial.println()	terminates	with	a	newline.	For	examples,

Serial.print(123);								//	123
Serial.print(1.23);							//	1.23
Serial.print("Hello");				//	Hello
Serial.print(123,	DEC);			//	123
Serial.print(123,	HEX);			//	7B
Serial.print(123,	OCT);			//	173
Serial.print(123,	BIN);			//	01111011
Serial.print(1.2345,	2);		//	1.23		(2	decimal	places)
Serial.print(1.2345,	3);		//	1.234	(3	decimal	places)

Serial.write(value):	Write	binary	data	 thru	 the	serial	port.	The	data	 is	sent	as	a	byte	or	a	series	of	bytes.	Use	print()	 to	send
human-readable	form.

Serial.available():	Get	the	number	of	bytes	(characters)	available	for	reading	from	the	serial	port.

Serial.read():	Read	the	first	byte	(in	int)	of	the	incoming	serial	data	(or	-1	if	no	data	is	available).

void	setup()	{
			Serial.begin(57600);
}
void	loop()	{
			char	inChar;
			if	(Serial.available()	>	0)	{
						inChar	=	(char)Serial.read();			//	Read	one	byte	(in	int)
						Serial.println(inChar);									//	Format	in	ASCII	text
						Serial.println(inChar,	DEC);				//	Format	in	DEC

			}
}

Serial.peek():	Return	the	next	byte	(in	int)	of	the	incoming	serial	data	without	removing	it	 from	the	internal	serial	buffer	(or	-1	if	no
data	is	available).

Serial.flush():	wait	for	the	transmission	of	outgoing	serial	data	to	complete.

serialEvent():	Call	back	function	when	serial	data	is	available.	Use	Serial.read()	to	read	the	data.	Read	"serialEvent	tutorial".

10.5		Interrupts

Polling	vs.	Interrupt

There	are	two	ways	for	handling	external	inputs:	polling	and	interrupt.

1.	 In	polling,	you	constantly	poll	the	status	of	the	external	inputs	and	invoke	the	processing	routine	when	the	input	is	triggered.

2.	 In	interrupt,	you	attach	an	interrupt	service	routine	(ISR)	to	an	external	input.	The	ISR	will	be	invoked	when	the	input	is	triggered.

External	Interrupt	Pins

In	Arduino	UNO,	2	pins	(2	and	3)	can	be	used	for	external	interrupts	and	mapped	to	INT0	and	INT1.	In	Arduino	Mega2560,	6	pins	(2,	3,	18,
19,	20,	21)	can	be	used	for	external	interrupts.

Interrupt	Service	Routine	(ISR)

ISRs	are	special	functions	that	cannot	have	any	parameters	and	return	nothing.	If	there	are	multiple	ISRs,	only	one	can	be	run	at	a	time,	other
interrupts	will	be	invoked	after	the	current	one	finishes,	in	an	order	that	depends	on	their	priority.

Since	millis()	replies	on	interrupt	to	count,	it	will	never	run	(and	increment)	inside	an	ISR.	delay()	also	requires	interrupt	and	won't	work
inside	 ISR.	Serial	 data	may	be	 lost.	Global	 variables	 are	 used	 to	 pass	data	 between	main	 program	and	 ISR.	They	 should	 be	declared	as
volatile	(so	that	they	are	stored	in	RAM	rather	than	register	for	multithreading).

Keep	the	ISR	as	short	as	possible.	It	shall	update	some	global	variables	(volatile)	to	indicate	state	change.

To	attach	an	ISR	to	an	interrupt	pin,	use:

attachedInterrupt(digitalPinToInterrupt(pin),	ISR,	mode)

The	modes	are:

LOW|HIGH:	trigger	when	the	pin	is	LOW	or	HIGH.

CHANGE:	trigger	when	the	pin	changes	value.

RISING|FALLING:	trigger	on	the	rising	and	falling	edge.

For	example,

const	byte	ledPin	=	13;
const	byte	interruptPin	=	2;
volatile	byte	state	=	LOW;

void	setup()	{
			pinMode(ledPin,	OUTPUT);
			pinMode(interruptPin,	INPUT_PULLUP);
			attachInterrupt(digitalPinToInterrupt(interruptPin),	toggle,	CHANGE);
}

void	loop()	{
			digitalWrite(ledPin,	state);
}

void	toggle()	{
			state	=	!state;
}

Enable/Disable	Interrupts

You	can	use	noInterrupts()	to	disable	all	the	interrupt,	and	interrupts()	to	re-enable	all	the	interrupts.	These	could	be	useful	for	real-
time	applications,	where	certain	critical,	time-sensitive	code	need	to	be	run.	For	examples,

void	loop()	{
		
			noInterrupts();
			//	critical,	time-sensitive	code	here
			interrupts();
		
}

https://www.arduino.cc/en/Tutorial/SerialEvent

Pin-Change	Interrupt

As	discussed,	pins	2	and	3	can	be	used	for	external	interrupts	and	triggered	on	HIGH|LOW|CHANGE|RISING|FALLING.	On	the	other	hands,
all	the	20	pins	can	be	set	to	trigger	on	RISING|FALLING	signal	edge.	However,	there	are	only	3	interrupt	vectors	(subroutines)	for	all	the	20
pins	and	you	need	to	resolve	the	triggering	pins.

11.		Arduino	Language	Reference

11.1		Data	Types

Arduino	supports	these	data	types.	Take	note	that	int	is	16-bit,	long	is	32-bit,	float	and	double	are	32-bit.

Integer:

byte:	8-bit	unsigned	integer	in	the	range	of	[0,255].

short:	16-bit	signed	integer	in	the	range	of	[-32768,32767],	same	as	int.

int:	(for	Arduino	UNO	and	Mega)	16-bit	signed	integer	in	the	range	of	[-32768,32767].

unsigned	int:	(for	Arduino	UNO	and	Mega)	16-bit	unsigned	integer	in	the	range	of	[0,65535].

long:	32-bit	signed	integer	in	the	range	of	[-2147483648,2147483647].

unsigned	long:	32-bit	unsigned	integer	in	the	range	of	[0,4294967295].

Character:

char:	in	ASCII	code,	represented	as	8-bit	signed	integer	in	the	range	of	[-128,127].

unsigned	char:	8-bit	unsigned	integer	in	the	range	of	[0,255],	same	as	byte.

Floating	Point:

float:	32-bit	floating	point.

double:	(for	Arduino	UNO	and	Mega)	32-bit	floating	point,	same	as	float.

Boolean:

bool:	holds	a	value	of	either	true	or	false.	Occupied	one	byte	of	memory)

boolean:	same	as	bool.

String:	Strings	can	be	represented	in	two	ways:	null-terminated	char	array	or	String	object.

null-terminated	char	array:	for	example,

char	str1[8];															//	7-character	plus	'\0'
char	str2[8]	=	{'a',	'r',	'd',	'u',	'i',	'n',	'o',	'\0'};
char	str3[8]	=	"arduino";			//	terminated	with	'\0'
char	str4[]	=	"arduino";				//	length	is	8

String	object:	for	examples,

String	strObj1	=	"hello	world";
String	strObj2	=	String(123);
String	strObj3	=	String(123,	HEX);
String	strObj3	=	String(123,	BIN);

String	object	has	these	functions:

aStr.length():	returns	the	length	of	the	string	in	characters,	excluding	the	terminating	null	character.

aStr.charAt(unsigned	int	idx):	returns	the	char	at	the	given	index.	String	character	index	begins	at	0.

aStr.equals(String	anotherStr):	return	bool	of	true/false.

aStr.substring(unsigned	 int	 fromIdx,	 unsigned	 int	 toIdx):	 return	 the	 substring	 from	 fromIdx	 (inclusive)	 to
toIdx	(exclusive).

aStr.toLowerCase(),	aStr.toUpperCase():

aStr.indexOf(str|char):	returns	the	index	of	the	given	substring	or	character;	or	-1	if	not	found.

more

You	can	use	these	functions	to	perform	type	conversion:	byte(),	char(),	float(),	int(),	long().

You	can	use	sizeof()	to	check	the	size	of	data	type,	variable	and	array.	For	examples,

int	myInt;
Serial.println(sizeof(myInt));
Serial.println(sizeof(int));

char	myStr[]	=	"hello	world";
for	(int	i	=	0;	i	<	sizeof(myStr)	-	1;	++i)	{			//	exclude	terminating	'\0'
			Serial.println(myStr[i]);
}

int	myIntArray[8];
for	(int	i	=	0;	i	<	sizeof(myIntArray)/sizeof(int);	++i)	{
			Serial.println(myIntArrya[i]);
}

11.2		Literals

Integer	Literals:

Base:	For	examples,	123	(base	10),	b1011	(base	2	with	prefix	'B'	or	'b'),	0123	(base	8	with	prefix	'0'),	0x123abc	(base	16	with
prefix	'0x'	or	'0X').

Type:	By	default,	an	integer	literal	is	treated	as	int.	You	can	use	suffix	'u'	or	'U'	for	unsigned	int	(e.g.,	123u),	suffix	'L'	or	'l'
for	long,	and	suffix	'ul'	or	'UL'	for	unsigned	long.

Floating	Point	Literals:	for	example,	12.3,	-4.5,	1.23e4,	-1.234E-5.

11.3		Constants

Arduino	defines	these	constants:

bool	constants:	true	or	false.

Digital	pin	levels:	HIGH	(>3.0V	on	5V	board)	or	LOW	(<1.5V	on	5V	board).

Digital	pin	modes:	INPUT,	OUTPUT,	INPUT_PULLUP.

LED_BUILTIN:	built-in	LED	pin	number	(Pin	13	for	Arduino	UNO	and	Mega).

11.4		Variable	Scope	and	Qualifiers

const:	constant,	cannot	be	modified.	const	is	preferred	over	#define.

volatile:	direct	the	compiler	to	load	the	variable	in	RAM	instead	of	register.	This	is	useful	in	multithreading	for	concurrent	access.	For
Arduino,	it	is	used	in	Interrupt	Service	Routine	(ISR).

static:	a	static	variable	inside	a	function	persists	beyond	the	function	calls	and	preserving	its	value	between	function	calls.

11.5		Programming	Constructs

if,	if...else,	if...elseif....elseif...else:

switch...case:

for:

while,	do...while:

break,	continue:

return:

#define:

#include:

Arithmetic	Operators:	+	(addition),	-	(subtraction),	*	(multiplication),	/	(division),	%	(modulo),	++	(increment),	--	(decrement).

Comparison	Operators:	==	(equal	to),	!=	(not	equal	to),	<	(less	than),	<=	(less	than	or	equal	to),	>	(greater	than),	>=	(greater	than	or	equal
to).

Boolean	Operators:	&&	(logical	AND),	||	(logical	OR),	!	(logical	NOT).

Bitwise	Operators:	&	(bitwise	AND),	|	(bitwise	OR),	~	(bitwise	NOT),	^	(bitwise	exclusive	OR),	<<	(bitshift	left),	>>	(bitshift	right).

Assignment:	=	(assignment),	+=,	-=,	*=,	/=,	%=	(compound	assignment),	&=,	|=,	^=	(compound	bitwise	assignment).

Pointers:	*	(dereference	operating),	&	(reference	operator).

11.6		Built-In	Functions

setup(),	loop():

Digital	IO:	pinMode(),	digitalRead(),	digitalWrite().

Analog	IO:	analogRead(),	analogWrite(),	analogReference().

Advance	IO:

tone(pin,	frequency,	[duration]),	noTone():	 create	a	 square	wave	of	 the	 specified	frequency	 (unsigned	int)	 (and
50%	duty	cycle)	on	a	pin,	for	the	optional	duration	in	milliseconds	(unsigned	long).

pulseIn(pin,	 HIGH|LOW,	 [timeout]),	 pulseInLong():	 Read	 a	 pulse	 (either	 HIGH	 or	 LOW)	 on	 a	 pin,	 until	 an	 optional
timeout,	and	return	the	pulse	in	microseconds	(unsigned	long).

shiftIn(dataPin,	 clockPin,	 MSBFIRST|LSBFIRST),	 shiftOut(dataPin,	 clockPin,	 MSBFIRST|LSBFIRST,
value):

Delay:	delay(),	delayMicroseconds():	delay	in	milliseconds	or	microseconds.

Time:	mills(),	micros():	the	number	of	milliseconds	or	microseconds	since	the	current	program	started.

Math:	pow(),	sqrt(),	sq(),	max(),	min(),	abs(),	map(),	constrain(),	sin(),	cos(),	tan().

Random:	random(min|0,	max),	randomSeed():	returns	a	pseudo-random	numbers	between	min	and	max	(exclusive)	(in	long).

Characters:	 isAlpha(),	 isDigit(),	 isAlphaNumeric(),	 isSpace(),	 isWhitespace(),	 isUpperCase(),	 isLowerCase(),
isPunct(),	isASCII(),	isGraph(),	isPrintable(),	isHexadecimalDigit(),	isControl().

Interrupts:	interrutps(),	nointerrupts():

External	Interrupts:	attachInterrupt(),	detachInterrutp():

Communication	objects:	Serial,	Stream.

USB	objects:	Keyboard,	Mouse.

12.		Debugging	Arduino	Programs

12.1		Serial.println()|print()|write()

It	is	extremely	DIFFICULT	to	debug	Arduino	programs.	It	is	hard	to	build	a	debugger,	as	the	program	is	run	inside	the	Arduino	board	and	NOT
in	your	computer.	There	is	no	runtime	error	messages.	Furthermore,	the	bug	could	be	due	to	the	external	hardware	or	your	software!!!

You	could	inspect	the	value	of	a	variable	inside	the	Arduino	board	by	printing	it	back	to	your	computer	via	serial	port,	using	one	of	the	following
functions:

Serial.print(var)	prints	the	value	of	a	variable	in	human-readable	ASCII	texts.

Serial.println(var)	appends	a	new	line	at	the	end	of	the	output.

Serial.write(var)	writes	a	raw	byte.

The	output	is	captured	in	the	"Serial	Monitor"	(under	"tools"	menu)	of	Arduino	IDE.

You	need	to	include	a	Serial.open(9600)	statement	in	the	setup(),	where	9600	(or	57600)	is	a	typical	serial	transmission	baud	rate.

12.2		Atmel	Studio

Atmel	Studio	is	a	free	Arduino	IDE,	which	you	can	set	breakpoints	and	trace	through	the	program.

[TODO	more]

13.		Arduino	Projects

13.1		LED	Cube

Circuit	Diagram

Pin	Counts

A	3x3x3	LED	cube	requires	3	layer	pins	+	3*3	column	pins	=	12	digital	pins.	For	RGB,	you	need	3*3*3	=	27	column	pins,	with	total	of	30	digital
pins.

A	4x4x4	LED	cube	requires	4	layer	pins	+	4*4	column	pins	=	20	digital	pins.	For	RGB,	you	need	4*4*3	=	48	column	pins,	with	total	of	52	digital
pins.

You	could	use	an	Arduino	MEGA	2560,	which	has	54	digital	pins	(instead	of	Arduino	UNO	having	14	digital	pins).

A	8x8x8	RGB	LED	cube	requires	8	layer	pin	+	8*8*3	=	200	digital	pins.	You	need	to	design	a	multiplexer	circuit!

Computation	of	Resistors'	Value

Assuming	that	only	one	layer	 is	turned	on	at	one	time,	VEC=0.2V,	 forward	voltage	and	current	of	LED	is	2.2V	and	20mA	respectively,	 then,
R2=(5-0.2-2.2)V/20mA=130Ω.	 Suppose	 that	 hFE=10	 (at	 saturation)	 and	 VEB=0.8V,	 we	 have	 IB=IC/hFE=2mA.	 Hence,	 R1=(5-
0.8)V/2mA=2.1KΩ.

Dissecting	the	Circuit	Diagram

1.	 Your	program	shall	turn	on	one	layer	at	one	time,	via	a	refresh	loop.

2.	 Your	program	shall	place	the	values	of	XY	in	a	display	buffer.

3.	 When	a	layer	is	turn	on	(by	setting	the	layer	value	low)	and	the	XY	is	low,	current	flows	from	5V	thru	the	LED	and	turn	on	the	LED.

4.	 On	the	other	hand,	when	the	layout	value	is	high,	the	entire	layout	is	off.

Using	Multiplexers

[TODO]

13.2		Musical	Tree/Tubes

[TODO]

13.3		Clock/Timer

[TODO]

14.		Miscellaneous

14.1		How	to	choose	the	wires

Reference:	"Wire	and	Connections"	@	https://learn.adafruit.com/wires-and-connections/overview.

Solid	verses	Stranded	Wires

Solid	 wires	 are	 harder	 to	 bend	 and	 less	 flexible;	 but	 easier	 to	 insert	 into	 breadboard/connectors	 and	 easier	 to	 solder.	 Stranded	wires	 are
flexible	but	harder	to	make	connections	on	the	ends.

Wire	Gauge	and	Sizes

Wire	sizes	are	measured	 in	standardized	AWG	(American	Wire	Gauge)	which	 is	 related	 to	 the	diameter	of	 the	wire.	The	smaller	 the	gauge
number,	the	larger	is	the	diameter	of	the	wire	and	the	more	current	its	can	carry.

The	rules	of	thumb	are:

Breadboards:	Gauge-22	 (5A)	 to	Gauge-20	 (6A).	For	starter,	buy	some	Gauge-22	solid	wires	 (Red,	Black,	and	some	colors)	 to	work	on
breadboard.

High	 current:	 If	 you	 need	 high	 current	 to	 drive	 large	motor,	many	 LEDs,	 or	 wearable,	 use	 thicker	 wire	 starting	 at	Gauge-18	 (9.5A)	 or
Gauge-16	(13A)	and	lower.

Household	electrical	power:	Gauge-16	(13A)(Extension	Cords)	to	Gauge-10	(30A)(Air-Conditioners.	Ovens).

The	voltage	drop	due	to	wire's	resistance	should	not	exceed	3%	over	the	entire	length.	For	example,	for	12V,	it	should	be	at	least	11.64V	at	the
other	end;	for	5V,	it	should	be	at	least	4.85V.

In	Europe,	wires	are	measured	in	metric	(instead	of	AWG).	E.g.,	16/0.2	means	16	strands	and	0.2mm	diameter,	which	is	roughly	equivalent	to
AWG	Gauge-20.	Some	typical	specifications	are:

16/0.2:	16	strands,	0.2mm	diameter	per	stand,	1.6mm	overall	diameter,	1.55m	cable	diameter,	0.5mm2	cross	sectional	area,	rating	1KV	3A
(3KW)	at	70°C,	tinned	copper	conductor.

For	DC	circuit,	use	RED	for	power	(Vcc)	and	BLACK	for	Ground	(GND).

14.2		Connectors

How	to	twist	two	wires?

[TODO]

For	AC	Wires:	Wire	Nuts	/	Electrical	Terminal	Connector	Strip

[TODO]

3-pin/4-pin	LED	Strip	Connector

[TODO]

REFERENCES	&	RESOURCES
1.	 Arduino	mother	site	@	http://arduino.cc.

2.	 Arduino	github	@	https://github.com/arduino/Arduino	(source	codes).

3.	 Oomlout	@	http://oomlout.com/oom.php	(Arduino	getting	started	tutorials).

4.	 Sparkfun	@	https://www.sparkfun.com	(Electronic	components	with	datasheets).

Electronic	Components	Store	@	SG

1.	 SGBotic	@	http://www.sgbotic.com/.

2.	 RS	Components	@	http://sg.rs-online.com/web/.

3.	 Sing	Lim	Tower.

Latest	version	tested:	Arduino	IDE	1.8.5	on	Arduino	Uno/Mega2560

https://learn.adafruit.com/wires-and-connections/overview
http://arduino.cc/
https://github.com/arduino/Arduino
http://oomlout.com/oom.php
https://www.sparkfun.com/
http://www.sgbotic.com/
http://sg.rs-online.com/web/

Last	modified:	March,	2018

Feedback,	comments,	corrections,	and	errata	can	be	sent	to	Chua	Hock-Chuan	(ehchua@ntu.edu.sg)			|			HOME

https://www.ntu.edu.sg/home/ehchua/programming/index.html

